Spectral Theory of Infinite-Area Hyperbolic Surfaces

(Autor)

Buch | Hardcover
366 Seiten
2007
Birkhauser Boston Inc (Verlag)
978-0-8176-4524-3 (ISBN)

Lese- und Medienproben

Spectral Theory of Infinite-Area Hyperbolic Surfaces - David Borthwick
117,69 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
This book is a self-contained monograph on spectral theory for non-compact Riemann surfaces, focused on the infinite-volume case. By focusing on the scattering theory of hyperbolic surfaces, this work provides an introductory example that is broadly accessible.
This book is a self-contained monograph on spectral theory for non-compact Riemann surfaces, focused on the infinite-volume case. By focusing on the scattering theory of hyperbolic surfaces, this work provides a compelling introductory example which will be accessible to a broad audience. The book opens with an introduction to the geometry of hyperbolic surfaces. Then a thorough development of the spectral theory of a geometrically finite hyperbolic surface of infinite volume is given. The final sections include recent developments for which no thorough account exists.

Preface.- Hyperbolic surfaces.- Geometry of H.- Fuchsian groups.- Geometric finiteness.- Classification of hyperbolic ends.- Length spectrum and Selberg's zeta function.- Review of the Compact Case.- Spectral theory for compact manifolds.- Selberg's trace formula for compact surfaces.- Consequences of the trace formula.- Review of the finite-volume case.- Finite-volume hyperbolic surfaces.- Spectral theory.- Selberg's trace formula.- Scattering Theory in Model Cases.- Spectral theory of H.- Scattering theory on H.- Hyperbolic cylinders.- Funnels.- Parabolic cylinder.- Scattering Theory for infinite-volume hyperbolic surfaces.- Compactification.- Continuation of the resolvent.- Resolvent asymptotics and the stretched product.- Structure of the resolvent kernel.- Discrete and continuous spectrum.- Generalized eigenfunctions.- Scattering matrix.- Structure of kernels in the conformally compact case.- Resonances and scattering poles.- Multiplicities of resonances.- Scattering poles.- Half-integer points.- Coincidence of resonances and scattering poles.- Upper bound on the density of resonances.- Infinite-volume spectral geometry.- Relative scattering determinant.- Regularized traces.- The resolvent 0-trace calculation.- Structure of Selberg's zeta function.- The Poisson formula for resonances.- Application.- Lower bounds on the density.- Weyl formula for the scattering phase.- The length spectrum.- Finiteness of isospectral classes.- Appendix A Functional analysis.- Basic spectral theory.- Analytic Fredholm theorem.- Operator residues and multiplicities.- Appendix B Asymptotic expansions.- References.- Index.

Reihe/Serie Progress in Mathematics ; 256
Zusatzinfo biography
Verlagsort Secaucus
Sprache englisch
Maße 155 x 235 mm
Gewicht 691 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Naturwissenschaften Physik / Astronomie
ISBN-10 0-8176-4524-1 / 0817645241
ISBN-13 978-0-8176-4524-3 / 9780817645243
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
79,99