Zahlentheorie

Buch | Hardcover
VIII, 509 Seiten
2006 | 4., Aufl. 2006
Spektrum Akademischer Verlag
978-3-8274-1692-6 (ISBN)
55,00 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
Die Zahlentheorie wird in dem Band umfassend und verständlich erläutert. Dabei setzen die Autoren Kenntnisse algebraischer Methoden nicht voraus, sie bieten sie als vertiefende Inhalte an. Mit historischen Anmerkungen, Beispielen sowie Aufgaben mit Lösungen.
(Autor) Harald Scheid / Andreas Frommer (Titel) Zahlentheorie (copy) Die "Königin der Mathematik", wie Gauß die Zahlentheorie nannte, sah man lange als zwar schönstes, aber auch nutzlosestes Gebiet der Mathematik an. In jüngster Zeit hat sich diese Einschätzung, bedingt durch die Verfügbarkeit schneller Computer stark geändert. Insbesondere benötigt man heute zahlentheoretische Methoden in der Kodierungstheorie und in der Kryptographie. Das Buch setzte einige Kenntnisse aus einem Grundstudium der Mathematik voraus. Es bietet zahlreiche Anwendungsbeispiele sowie eine umfangreiche Sammlung von Aufgaben mit Lösungshinweisen. (Biblio)

Prof. Dr. Harald Scheid und Prof. Dr. Andreas Frommer lehren an der Bergischen Universität Wuppertal. Von Prof. Dr. Harald Scheid sind bei Springer Spektrum außerdem erschienen: - H. Scheid und W. Schwarz, Elemente der Arithmetik und Algebra, 5. Auflage - H. Scheid und W. Schwarz, Elemente der Geometrie, 4. Auflage - H. Scheid und W. Schwarz, Elemente der Linearen Algebra und der Analysis, 1. Auflage

1 Teilbarkeit ganzer Zahlen 1.1 Die Teiler einer ganzen Zahl 1.2 Primzahlen 1.3 Primfaktorzerlegung 1.4 Eine Formel von Legendre und die Sätze von Tschebyscheff 1.5 Irrationalitätsbeweise 1.6 Der größte gemeinsame Teiler 1.7 Das kleinste gemeinsame Vielfache 1.8 Kettenbrüche 1.9 Periodische Kettenbrüche 1.10 Farey-Folgen 1.11 Die Folge der Fibonacci-Zahlen 1.12 Aufgaben 1.13 Lösungen der Aufgaben 2 Integritätsbereiche 2.1 Teilbarkeit in Integritätsbereichen 2.2 Euklidische Ringe 2.3 Die ganzen gaußschen Zahlen 2.4 Ganzalgebraische Zahlen zweiten Grades 2.5 Die pellsche Gleichung 2.6 Aufgaben 2.7 Lösungen der Aufgaben 3 Restklassen 3.1 Kongruenzen und Restklassen 3.2 Teilbarkeitskriterien 3.3 Der Satz von Fermat 3.4 Primitive Restklassen 3.5 Dezimalbrüche 3.6 Ewiger Kalender 3.7 Magische Quadrate 3.8 Primzahlkriterien und Pseudoprimzahlen 3.9 Mersennesche und fermatsche Primzahlen 3.10 Aufgaben 3.11 Lösungen der Aufgaben 4 Zahlentheoretische Algorithmen 4.1 Codierung 4.2 Prüfzeichen 4.3 Krypthograhie 4.4 Öffentliche Chiffriersysteme 5 Kongruenzen und diophantische Gleichungen 5.1 Lineare und diophantische Gleichungen und Kongruenzen 5.2 Quadratische diophantische Gleichungen und Kongruenzen 5.3 Quadratische Reste 5.4 Mersennesche und fermatsche Primzahlen 5.5 Darstellung von Zahlen als Quadratsummen 5.6 Pythagoreische Zahlentripel; die Fermatsche Vermutung 5.7 Rationale Punkte auf algebraische Kurven 5.8 Binäre quadratische Formen 5.9 Ternäre quadratische Formen; der Drei-Quadrate-Satz 5.10 Figurierte Zahlen 5.11 Der Gitterpunktsatz von Minkowski 5.12 Aufgaben 5.13 Lösungen der Aufgaben 6 Zahlentheoretische Funktionen 6.1 Das Dirichlet-Produkt 6.2 Multiplikative Funktionen 6.3 Dirichlet-Reihen 6.4 Mittelwerte zahlentheoretischer Funktionen 6.5 Weitere Produkte zahlentheoretischer Funktionen 6.6 Die Teilersummenfunktion 6.7 Aufgaben 6.8 Lösungen der Aufgaben 7 Der Primzahlsatz 7.1 Der Primzahlsatz und der direchletsche Primzahlsatz 7.2 Die selbergsche Formel 7.3 Beweis des Primzahlsatzes 7.4 Anmerkungen, Folgerungen 7.5 Primzahlen in arithmetischen Progressionen 7.6 Zufallsprimzahlen und stochastische Argumentationen 7.7 Aufgaben 7.8 Lösungen der Aufgaben 8 Elemente der Additiven Zahlentheorie 8.1 Problemstellungen der Additiven Zahlentheorie 8.2 Partitionen 8.3 Ein spezielles Partitionsproblem 8.4 Anzahl der Darstellungen als Quadratsummen 8.5 Die Dichte einer Menge natürlicher Zahlen 8.6 Der Satz von Goldbach-Schnirelmann 8.7 Der Satz von Waring-Hilbert 8.8 Wesentliche Komponenten 8.9 Das Münzenproblem und das Briefmarkenproblem 8.10 Aufgaben 8.11 Lösungen der Aufgaben 9 Siebmethoden 9.1 Allgemeine Bemerkungen über Siebverfahrne 9.2 Die Siebmethode von Selberg 9.3 Primzahlen in arithmetischen Progressionen 9.4 Primzahlzwillinge 9.5 Zur goldbachschen Vermutung 9.6 Quadratsummen und Stammbruchsummen 9.7 Aufgaben 9.8 Lösungen der Aufgaben Literatur Symbolverzeichnis Namensverzeichnis Sachverzeichnis

Sprache deutsch
Maße 170 x 240 mm
Gewicht 1112 g
Einbandart gebunden
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Schlagworte Hardcover, Softcover / Mathematik/Allgemeines, Lexika • Mathematik • Zahlentheorie
ISBN-10 3-8274-1692-2 / 3827416922
ISBN-13 978-3-8274-1692-6 / 9783827416926
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich