Topological Function Spaces - A.V. Arkhangel'skii

Topological Function Spaces

Buch | Hardcover
205 Seiten
1991
Springer (Verlag)
978-0-7923-1531-5 (ISBN)
53,49 inkl. MwSt
One service mathematics has rendered the 'Et moi, "0' si j'avait su oomment en revenir. human race. It has put common sense back je n'y serais point aile:' Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded n- sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'el:re of this series.

0. General information on Cp(X) as an object of topological algebra. Introductory material.- 1. General questions about Cp(X).- 2. Certain notions from general topology. Terminology and notation.- 3. Simplest properties of the spaces Cp(X, Y).- 4. Restriction map and duality map.- 5. Canonical evaluation map of a space X in the space CpCp(X).- 6. Nagata’s theorem and Okunev’s theorem.- I. Topological properties of Cp(X) and simplest duality theo-rems.- 1. Elementary duality theorems.- 2. When is the space Cp(X) u-compact?.- 3. “tech completeness and the Baire property in spaces Cp(X).- 4. The Lindelöf number of a space Cp(X),and Asanov’s theorem.- 5. Normality, collectionwise normality, paracompactness, and the extent of Cp(X).- 6. The behavior of normality under the restriction map between function spaces.- II. Duality between invariants of Lindelöf number and tightness type.- 1. Lindelöf number and tightness: the Arkhangel’skii—Pytkeev theorem.- 2. Hurewicz spaces and fan tightness.- 3. Fréchet—Urysohn property, sequentiality, and the k-property of Cp(X).- 4. Hewitt—Nachbin spaces and functional tightness.- 5. Hereditary separability, spread, and hereditary Lindelöf number.- 6. Monolithic and stable spaces in Cp-duality.- 7. Strong monolithicity and simplicity.- 8. Discreteness is a supertopological property.- III. Topological properties of function spaces over arbitrary compacta.- 1. Tightness type properties of spaces Cp(X), where X is a compactum, and embedding in such Cp(X).- 2. Okunev’s theorem on the preservation of Q-compactness under t-equivalence.- 3. Compact sets of functions in Cp(X). Their simplest topological properties.- 4. Grothendieck’s theorem and its generalizations.- 5. Namioka’s theorem, and Pták’s approach.- 6.Baturov’s theorem on the Lindelöf number of function spaces over compacta.- IV. Lindelöf number type properties for function spaces over compacta similar to Eberlein compacta, and properties of such compacta.- 1. Separating families of functions, and functionally perfect spaces.- 2. Separating families of functions on compacta and the Lindelöf number of Cp(X).- 3. Characterization of Corson compacta by properties of the space Cp(X).- 4. Resoluble compacta, and condensations of Cp(X) into a ?*-product of real lines. Two characterizations of Eberlein compacta.- 5. The Preiss—Simon theorem.- 6. Adequate families of sets: a method for constructing Corson compacta.- 7. The Lindelöf number of the space Cp(X),and scattered compacta.- 8. The Lindelöf number of Cp(X) and Martin’s axiom.- 9. Lindelöf ?-spaces, and properties of the spaces Cp,n(X).- 10. The Lindelöf number of a function space over a linearly ordered compactum.- 11. The cardinality of Lindelöf subspaces of function spaces over compacta.

Erscheint lt. Verlag 30.11.1991
Reihe/Serie Mathematics and its Applications ; 78
Mathematics and its Applications ; 78
Zusatzinfo IX, 205 p.
Verlagsort Dordrecht
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 0-7923-1531-6 / 0792315316
ISBN-13 978-0-7923-1531-5 / 9780792315315
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich