Coherent Sheaves, Superconnections, and Riemann-Roch-Grothendieck
Springer International Publishing (Verlag)
978-3-031-27236-3 (ISBN)
Coherent Sheaves, Superconnections, and Riemann-Roch-Grothendieck is an important contribution to both the geometric and analytic study of complex manifolds and, as such, it will be a valuable resource formany researchers in geometry, analysis, and mathematical physics.
Jean-Michel Bismut is a French mathematician who is a professor in the Mathematics Department in Orsay. He is known for his contributions to index theory, geometric analysis and probability theory. Together with Gilles Lebeau, he has developed the theory of the hypoelliptic Laplacian, to which he found applications in various fields of mathematics. He shared the Shaw Prize in Mathematical Sciences 2021 with Jeff Cheeger.
Shu Shen is a maître de conférences at Sorbonne University in Paris. His research focuses on the fields of analysis, geometry, and representation theory.
Zhaoting Wei is an assistant professor in mathematics at Texas A&M University-Commerce, USA. His research interests include noncommutative geometry and higher category theory.
Introduction.- Bott-Chern Cohomology and Characteristic Classes.- The Derived Category ${/mathrm{D^{b}_{/mathrm{coh}}}}$.- Preliminaries on Linear Algebra and Differential Geometry.- The Antiholomorphic Superconnections of Block.- An Equivalence of Categories.- Antiholomorphic Superconnections and Generalized Metrics.- Generalized Metrics and Chern Character Forms.- The Case of Embeddings.- Submersions and Elliptic Superconnections.- Elliptic Superconnection Forms and Direct Images.- A Proof of Theorem 10-1 when $/overline{/partial}^{X}/partial^{X}/omega^{X}=0$..- The Hypoelliptic Superconnections.- The Hypoelliptic Superconnection Forms.- The Hypoelliptic Superconnection Forms when $/overline{/partial}^{X}/partial^{X}/omega^{X}=0$.- Exotic Superconnections and Riemann-Roch-Grothendieck.- Subject Index.- Index of Notation.- Bibliography.
Erscheinungsdatum | 15.11.2024 |
---|---|
Reihe/Serie | Progress in Mathematics |
Zusatzinfo | X, 184 p. 1 illus. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Schlagworte | Chern characters • coherent sheaves • derived categories • hypoelliptic equations • Riemann-Roch Theorems |
ISBN-10 | 3-031-27236-6 / 3031272366 |
ISBN-13 | 978-3-031-27236-3 / 9783031272363 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich