A Prolegomenon to Differential Equations and Variational Methods on Graphs
Seiten
2025
Cambridge University Press (Verlag)
978-1-009-49465-6 (ISBN)
Cambridge University Press (Verlag)
978-1-009-49465-6 (ISBN)
- Noch nicht erschienen (ca. Januar 2025)
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
A bird's eye view of theoretical developments and concrete applications that will enable newcomers to get a flavour of key results. Provides an exhaustive, at the time of writing, bibliography which will point readers to where fuller details and other directions can be explored. This title is also available as open access on Cambridge Core.
The use of differential equations on graphs as a framework for the mathematical analysis of images emerged about fifteen years ago and since then it has burgeoned, and with applications also to machine learning. The authors have written a bird's eye view of theoretical developments that will enable newcomers to quickly get a flavour of key results and ideas. Additionally, they provide an substantial bibliography which will point readers to where fuller details and other directions can be explored. This title is also available as open access on Cambridge Core.
The use of differential equations on graphs as a framework for the mathematical analysis of images emerged about fifteen years ago and since then it has burgeoned, and with applications also to machine learning. The authors have written a bird's eye view of theoretical developments that will enable newcomers to quickly get a flavour of key results and ideas. Additionally, they provide an substantial bibliography which will point readers to where fuller details and other directions can be explored. This title is also available as open access on Cambridge Core.
1. Introduction; 2. History and literature overview; 3. Calculus on undirected edge-weighted graphs; 4. Directed graphs; 5. The graph Ginzburg–Landau functional; 6. Spectrum of the graph Laplacians; 7. Gradient flow: Allen–Cahn; 8. Merriman–Bence–Osher scheme; 9. Graph curvature and mean curvature flow; 10. Freezing of Allen–Cahn, MBO, and mean curvature flow; 11. Multiclass extensions; 12. Laplacian learning and Poisson learning; 13. Conclusions; Bibliography.
Erscheint lt. Verlag | 31.1.2025 |
---|---|
Reihe/Serie | Elements in Non-local Data Interactions: Foundations and Applications |
Zusatzinfo | Worked examples or Exercises |
Verlagsort | Cambridge |
Sprache | englisch |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Mathematik / Informatik ► Informatik ► Theorie / Studium | |
ISBN-10 | 1-009-49465-1 / 1009494651 |
ISBN-13 | 978-1-009-49465-6 / 9781009494656 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Auswertung von Daten mit pandas, NumPy und IPython
Buch | Softcover (2023)
O'Reilly (Verlag)
44,90 €
Datenanalyse für Künstliche Intelligenz
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95 €