Elliptically Symmetric Distributions in Signal Processing and Machine Learning (eBook)

eBook Download: PDF
2024 | 1. Auflage
XIV, 376 Seiten
Springer-Verlag
978-3-031-52116-4 (ISBN)

Lese- und Medienproben

Elliptically Symmetric Distributions in Signal Processing and Machine Learning -
Systemvoraussetzungen
181,89 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book constitutes a review of recent developments in the theory and practical exploitation of the elliptical model for measured data in both classical and emerging areas of signal processing. It develops techniques usable in (among other areas): graph learning, robust clustering, linear shrinkage, information geometry, subspace-based algorithm design, and semiparametric and misspecified estimation.

 

The various contributions combine to show how the goal of inferring information from a set of acquired data, recurrent in statistical signal processing, can be achieved, even when the common practical assumption of Gaussian distribution in the data is not valid. The elliptical model propounded maintains the performance of its inference procedures even when that assumption fails. The elliptical distribution, being fully characterized by its location vector, its scatter/covariance matrix and its so-called density generator, used to describe the impulsiveness of the data, is sufficiently flexible to model heterogeneous applications.

 

This book is of interest to any graduate students and academic researchers wishing to acquaint themselves with the latest research in an area of rising consequence. It is also of assistance to practitioners working in data analysis, wireless communications, radar, and image processing.

Erscheint lt. Verlag 11.10.2024
Zusatzinfo XIV, 376 p. 76 illus., 63 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Technik Elektrotechnik / Energietechnik
Schlagworte Elliptical distribution • Graph Learning • information geometry • Linear Shrinkage • missing data • Robust Clustering • Robust Statistics • Statistical Signal Processing • Subspace-based Algorithms
ISBN-10 3-031-52116-1 / 3031521161
ISBN-13 978-3-031-52116-4 / 9783031521164
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 19,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

eBook Download (2024)
Wiley-VCH GmbH (Verlag)
24,99