Multi-variant User Interfaces in E-commerce (eBook)
XIV, 134 Seiten
Springer Nature Switzerland (Verlag)
978-3-031-67758-8 (ISBN)
This book focuses on the personalisation of the user interface in e-commerce based on collected data on customer behaviour. While product recommendation systems are widely used for this purpose today, they do not allow for a comprehensive adaptation of the layout to different user groups. The proposed approach is based on the conclusion that since e-commerce customers are different, the user interface should also be different. To make this possible, several components need to be combined, which together allow the design of the online shop to be automatically or expertly adapted to the customer's choices and behaviour. It presents and discusses a framework that allows data to be collected, processed and used to optimise UI variants for generated customer segments. The proposed approach has been verified in practice and further developed on this basis, so that the reader is presented with a solution that is not riddled with 'baby age' problems, and the limitations and challenges identified are described and commented on in detail. Typical e-commerce systems currently have a single UI for all customers. The implementation of multi-variant UIs therefore represents an opportunity for companies to create a marketing advantage by addressing the personalisation trends in e-commerce.
The book is intended for those responsible for developing e-commerce platform and user interfaces for web-based systems, as well as individuals interested in practical applications of machine learning in business.
Erscheint lt. Verlag | 18.9.2024 |
---|---|
Reihe/Serie | Progress in IS |
Zusatzinfo | XIV, 134 p. 44 illus., 33 illus. in color. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Mathematik / Informatik ► Mathematik ► Statistik | |
Wirtschaft ► Allgemeines / Lexika | |
Wirtschaft ► Betriebswirtschaft / Management ► Wirtschaftsinformatik | |
Schlagworte | Big data analysis • Clustering • E-Commerce • machine learning • personalization • UI Design • User Experience • user interface |
ISBN-10 | 3-031-67758-7 / 3031677587 |
ISBN-13 | 978-3-031-67758-8 / 9783031677588 |
Haben Sie eine Frage zum Produkt? |
Größe: 10,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich