Für diesen Artikel ist leider kein Bild verfügbar.

Continuous Optimization For Data Science

(Autor)

Buch | Hardcover
300 Seiten
2025
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-12-9919-3 (ISBN)
137,15 inkl. MwSt
The text is divided into three main parts: unconstrained optimization, constrained optimization, and linear programming. The first part addresses unconstrained optimization in single-variable and multivariable functions, introducing key algorithms such as steepest descent, Newton, and quasi-Newton methods.The second part focuses on constrained optimization, starting with linear equality constraints and extending to more general cases, including inequality constraints. It details optimality conditions, sensitivity analysis, and relevant algorithms for solving these problems.The third part covers linear programming, presenting the formulation of LP problems, the simplex algorithm, and sensitivity analysis. Throughout, the text provides numerous applications to data science, such as linear regression, maximum likelihood estimation, expectation-maximization algorithms, support vector machines, and linear neural networks.
Erscheint lt. Verlag 30.7.2025
Verlagsort Singapore
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
ISBN-10 981-12-9919-6 / 9811299196
ISBN-13 978-981-12-9919-3 / 9789811299193
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich