Introduction to Data Governance for Machine Learning Systems
Apress (Verlag)
979-8-8688-1022-0 (ISBN)
The book begins by covering fundamental principles and practices of underlying ML applications and data governance before diving into the unique challenges and opportunities at play when adapting data governance theory and practice to ML projects, including establishing governance frameworks, ensuring data quality and interpretability, preprocessing, and the ethical implications of ML algorithms and techniques, from mitigating bias in AI systems to the importance of transparency in models.
Monitoring and maintaining ML systems performance is also covered in detail, along with regulatory compliance and risk management considerations. Moreover, the book explores strategies for fostering a data-driven culture within organizations and offers guidance on change management to ensure successful adoption of data governance initiatives. Looking ahead, the book examines future trends and emerging challenges in ML data governance, such as Explainable AI (XAI) and the increasing complexity of data.
What You Will Learn
Comprehensive understanding of machine learning and data governance, including fundamental principles, critical practices, and emerging challenges
Navigating the complexities of managing data effectively within the context of machine learning projects
Practical strategies and best practices for implementing effective data governance in machine learning projects
Key aspects such as data quality, privacy, security, and ethical considerations, ensuring responsible and effective use of data
Preparation for the evolving landscape of ML data governance with a focus on future trends and emerging challenges in the rapidly evolving field of AI and machine learning
Who This Book Is For
Data professionals, including data scientists, data engineers, AI developers, or data governance specialists, as well as managers or decision makers looking to implement or improve data governance practices for machine learning projects
Aditya Nandan Prasad is an experienced analytics leader with a strong track record in driving business intelligence and recommendations for operational and strategic decision making. He excels at leading and developing high-performing teams and collaborating to identify growth strategies. With a passion for complex data analysis and a tool-agnostic approach, he brings a data-driven perspective to solving business problems. Aditya has successfully led data migration projects and implemented innovative analytics solutions to support strategic business initiatives, and his experience in leading and collaborating with cross-functional teams has helped him become an expert on implementing data governance practices within organizations.
Chapter 1: Introduction to Machine Learning Data Governance.- Chapter 2: Establishing a Data Governance Framework.- Chapter 3: Data Quality and Preprocessing.- Chapter .- 4: Data Privacy and Security Considerations.- Chapter 5: Ethical Implications and Bias Mitigation.- Chapter 6: Model Transparency and Interpretability.- Chapter 7: Monitoring and Maintaining Machine Learning System.- Chapter 8: Regulatory Compliance and Risk Management.- Chapter 9: Organizational Culture and Change Management.- Chapter 10: Future Trends and Emerging Challenges.
Erscheinungsdatum | 18.12.2024 |
---|---|
Zusatzinfo | 5 Illustrations, black and white; XXV, 966 p. 5 illus. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 178 x 254 mm |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
ISBN-13 | 979-8-8688-1022-0 / 9798868810220 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich