Spherical Means for PDEs - Karl K. Sabelfeld, Irina S. Shalimova

Spherical Means for PDEs

Buch | Hardcover
196 Seiten
1997
VSP International Science Publishers (Verlag)
978-90-6764-211-8 (ISBN)
179,95 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
This monograph presents new spherical mean-value relations for classical boundary value problems of mathematical physics. The derived spherical mean value relations provide equivalent integral formulations of original boundary value problems.
01/07 This title is now available from Walter de Gruyter. Please see www.degruyter.com for more information.

This monographs presents new spherical mean value relations for classical boundary value problems of mathematical physics. The derived spherical mean value relations provide equivalent integral formulations of original boundary value problems.

Direct and converse mean value theorems are proved for scalar elliptic equations (the Laplace, Helmholtz and diffusion equations), parabolic equations, high-order elliptic equations (biharmonic and metaharmonic equations), and systems of elliptic equations (the Lamé equation, systems of diffusion and elasticity equations). In addition, applications to the random walk on spheres method are given.

Introduction
SCALAR SECOND ORDER PDES
Spherical mean value relations for the Laplace equation and integral formulation of the Dirichlet problem
The diffusion and Helmholtz equations
Generalized second order elliptic equations
Parabolic equations
HIGH-ORDER ELLIPTIC EQUATIONS
Balayage operator
The biharmonic equation
Fourth order equation govering the bending of a plate on an elastic base surface
Metaharmonic equations
TRIANGULAR SYSTEMS OF ELLIPTIC EQUATIONS
A one-component diffusion system
A two-component diffusion system
A coupled biharmonic-harmonic equation
SYSTEMS OF ELASTICITY THEORY
The Lamé equation
Pseudo-vibration elastic equation
Thermo-elastic equation
GENERALIZED POISSON FORMULA FOR THE LAMé EQUATION
Plane elasticity
Generalized spatial Poisson formula for the Lamé equation
An alternative derivation of the Poisson formula
SPHERICAL MEANS FOR THE STRESS AND STRAIN TENSOR
Spherical means for the displacement components through the displacement vector

Mean value relations for the stress components in terms of the surface tractions
APPLICATIONS TO THE RANDOM WALK ON SPHERES METHOD
Spherical mean as mathematical expectation
Iterations of the spherical mean operator
Random walk on spheres algorithm
Biharmonic equation
Alternative Schwarz procedure
Bibliography

Erscheint lt. Verlag 1.3.1997
Verlagsort Zeist
Sprache englisch
Gewicht 455 g
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
ISBN-10 90-6764-211-8 / 9067642118
ISBN-13 978-90-6764-211-8 / 9789067642118
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich