Spectral Theory of Automorphic Functions
Springer (Verlag)
978-0-7923-0487-6 (ISBN)
1. Introduction.- 2. What Does One Need Automorphic Functions for? Some Remarks or a Pragmatic Reader.- 3. Harmonic Analysis of Periodic Functions. The Hardy—Vorono? Formula.- 4. Expansion in Eigenfunctions of the Automorphic Laplacian on the Lobachevsky Plane.- 5. Harmonic Analysis of Automorphic Functions. Estimates for Fourier Coefficients of Parabolic Forms of Weight Zero.- 6. The Selberg Trace Formula for Fuchsian Groups of the First Kind.- 7. The Theory of the Selberg Zeta-Function.- 8. Problems in the Theory of the Discrete Spectrum of Automorphic Laplacians.- 9. The Spectral Moduli Problem.- 10. Automorphic Functions and the Kummer Problem.- 11. The Selberg Trace Formula on the Reductive Lie Groups.- 12. Automorphic Functions, Representations and L-functions.- 13. Remarks and Comments. Annotations to the Cited Literature.- References.- Appendix 1. Monodromy Groups and Automorphic Functions.- Appendix 2. Automorphic Functions for Effective Solutions of Certain Issues of the Riemann-Hilbert Problem.- Author Index.
Erscheint lt. Verlag | 31.10.1990 |
---|---|
Reihe/Serie | Mathematics and its Applications ; 51 | Mathematics and its Applications ; 51 |
Zusatzinfo | XIV, 176 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Maße | 156 x 234 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
ISBN-10 | 0-7923-0487-X / 079230487X |
ISBN-13 | 978-0-7923-0487-6 / 9780792304876 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich