Computer Vision – ECCV 2024
Springer International Publishing (Verlag)
978-3-031-73009-2 (ISBN)
- Noch nicht erschienen - erscheint am 01.12.2024
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
The multi-volume set of LNCS books with volume numbers 15059 up to 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29-October 4, 2024.
The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. They deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation.
LG-Gaze: Learning Geometry-aware Continuous Prompts for Language-Guided Gaze Estimation.- Efficient Training with Denoised Neural Weights.- Learning the Unlearned: Mitigating Feature Suppression in Contrastive Learning.- Integration of Global and Local Representations for Fine-grained Cross-modal Alignment.- Local and Global Flatness for Federated Domain Generalization.- SRPose: Two-view Relative Pose Estimation with Sparse Keypoints.- Deep Reward Supervisions for Tuning Text-to-Image Diffusion Models.- Paying More Attention to Images: A Training-Free Method for Alleviating Hallucination in LVLMs.- Inf-DiT: Upsampling any-resolution image with memory-efficient diffusion transformer..- Implicit Neural Models to Extract Heart Rate from Video.- Boost Your NeRF: A Model-Agnostic Mixture of Experts Framework for High Quality and Efficient Rendering.- PFGS: High Fidelity Point Cloud Rendering via Feature Splatting.- Few-Shot Anomaly-Driven Generation for Anomaly Classification and Segmentation.- E3M: Zero-Shot Spatio-Temporal Video Grounding with Expectation-Maximization Multimodal Modulation.- EMO: Emote Portrait Alive - Generating Expressive Portrait Videos with Audio2Video Diffusion Model under Weak Conditions.- LMT-GP: Combined Latent Mean-Teacher and Gaussian Process for Semi-supervised Low-light Image Enhancement.- Veil Privacy on Visual Data: Concealing Privacy for Humans, Unveiling for DNNs.- Efficient Vision Transformers with Partial Attention.- Generalized Coverage for More Robust Low-Budget Active Learning.- Rasterized Edge Gradients: Handling Discontinuities Differentially.- Enhancing Cross-Subject fMRI-to-Video Decoding with Global-Local Functional Alignment.- FedTSA: A Cluster-based Two-Stage Aggregation Method for Model-heterogeneous Federated Learning.- LLaVA-UHD: an LMM Perceiving any Aspect Ratio and High-Resolution Images.- Learning Natural Consistency Representation for Face Forgery Video Detection.- ZeroI2V: Zero-Cost Adaptation of Pre-Trained Transformers from Image to Video.- Zero-Shot Adaptation for Approximate Posterior Sampling of Diffusion Models in Inverse Problems.- R.A.C.E.: Robust Adversarial Concept Erasure for Secure Text-to-Image Diffusion Model.
Erscheinungsdatum | 12.11.2024 |
---|---|
Reihe/Serie | Lecture Notes in Computer Science |
Zusatzinfo | LXXXV, 480 p. 157 illus., 151 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Mathematik / Informatik ► Informatik ► Netzwerke | |
Informatik ► Software Entwicklung ► User Interfaces (HCI) | |
Schlagworte | Artificial Intelligence • Computer Networks • Computer systems • computer vision • Education • Human-Computer Interaction (HCI) • Image Analysis • image coding • Image Processing • image reconstruction • Image Segmentation • learning • machine learning • Object recognition • pattern recognition • reconstruction • Signal Processing • Software engineering |
ISBN-10 | 3-031-73009-7 / 3031730097 |
ISBN-13 | 978-3-031-73009-2 / 9783031730092 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich