Deep Reinforcement Learning with Python -  Nimish Sanghi

Deep Reinforcement Learning with Python (eBook)

RLHF for Chatbots and Large Language Models
eBook Download: PDF
2024 | 2., Second Edition
XXV, 634 Seiten
Apress (Verlag)
979-8-8688-0273-7 (ISBN)
Systemvoraussetzungen
62,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Gain a theoretical understanding to the most popular libraries in deep reinforcement learning (deep RL).  This new edition focuses on the latest advances in deep RL using a learn-by-coding approach, allowing readers to assimilate and replicate the latest research in this field. 

New agent environments ranging from games, and robotics to finance are explained to help you try different ways to apply reinforcement learning. A chapter on multi-agent reinforcement learning covers how multiple agents compete, while another chapter focuses on the widely used deep RL algorithm, proximal policy optimization (PPO). You'll see how reinforcement learning with human feedback (RLHF) has been used by chatbots, built using Large Language Models, e.g. ChatGPT to improve conversational capabilities.

You'll also review the steps for using the code on multiple cloud systems and deploying models on platforms such as Hugging Face Hub. The code is in Jupyter Notebook, which canbe run on Google Colab, and other similar deep learning cloud platforms, allowing you to tailor the code to your own needs. 

Whether it's for applications in gaming, robotics, or Generative AI, Deep Reinforcement Learning with Python will help keep you ahead of the curve.


What You'll Learn

  • Explore Python-based RL libraries, including StableBaselines3 and CleanRL  
  • Work with diverse RL environments like Gymnasium, Pybullet, and Unity ML
  • Understand instruction finetuning of Large Language Models using RLHF and PPO
  • Study training and optimization techniques using HuggingFace, Weights and Biases,      and Optuna 

Who This Book Is For

Software engineers and machine learning developers eager to sharpen their understanding of deep RL and acquire practical skills in implementing RL algorithms fromscratch. 



Gain a theoretical understanding to the most popular libraries in deep reinforcement learning (deep RL).  This new edition focuses on the latest advances in deep RL using a learn-by-coding approach, allowing readers to assimilate and replicate the latest research in this field. New agent environments ranging from games, and robotics to finance are explained to help you try different ways to apply reinforcement learning. A chapter on multi-agent reinforcement learning covers how multiple agents compete, while another chapter focuses on the widely used deep RL algorithm, proximal policy optimization (PPO). You'll see how reinforcement learning with human feedback (RLHF) has been used by chatbots, built using Large Language Models, e.g. ChatGPT to improve conversational capabilities.You'll also review the steps for using the code on multiple cloud systems and deploying models on platforms such as Hugging Face Hub. The code is in Jupyter Notebook, which canbe run on Google Colab, and other similar deep learning cloud platforms, allowing you to tailor the code to your own needs. Whether it's for applications in gaming, robotics, or Generative AI, Deep Reinforcement Learning with Python will help keep you ahead of the curve.What You'll LearnExplore Python-based RL libraries, including StableBaselines3 and CleanRL  Work with diverse RL environments like Gymnasium, Pybullet, and Unity MLUnderstand instruction finetuning of Large Language Models using RLHF and PPOStudy training and optimization techniques using HuggingFace, Weights and Biases,      and Optuna  Who This Book Is ForSoftware engineers and machine learning developers eager to sharpen their understanding of deep RL and acquire practical skills in implementing RL algorithms fromscratch. 
Erscheint lt. Verlag 13.7.2024
Zusatzinfo XXV, 634 p. 204 illus.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Artificial Intelligence • autonomous vehicle • Deep Q - Learning • Deep Reinforcement Learning • machine learning • Markov Decision Processes • Neural networks • OpenAI Gym • PyTorch • Robotics
ISBN-13 979-8-8688-0273-7 / 9798868802737
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 26,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
18,68