Web and Big Data -

Web and Big Data

8th International Joint Conference, APWeb-WAIM 2024, Jinhua, China, August 30 – September 1, 2024, Proceedings, Part II
Buch | Softcover
500 Seiten
2024 | 2024 ed.
Springer Nature (Verlag)
978-981-97-7234-6 (ISBN)
87,73 inkl. MwSt

The five-volume set LNCS 14961, 14962, 14963, 14964 and 14965 constitutes the refereed proceedings of the 8th International Joint Conference on Web and Big Data, APWeb-WAIM 2024, held in Jinhua, China, during August 30-September 1, 2024.

The 171 full papers presented in these proceedings were carefully reviewed and selected from 558 submissions.

The papers are organized in the following topical sections:
Part I: Natural language processing, Generative AI and LLM, Computer Vision and Recommender System.

Part II: Recommender System, Knowledge Graph and Spatial and Temporal Data.

Part III: Spatial and Temporal Data, Graph Neural Network, Graph Mining and Database System and Query Optimization.

Part IV: Database System and Query Optimization, Federated and Privacy-Preserving Learning, Network, Blockchain and Edge computing, Anomaly Detection and Security

Part V: Anomaly Detection and Security, Information Retrieval, Machine Learning, Demonstration Paper and Industry Paper.

.- Recommender System.
.- Hierarchical Review-based Recommendation with Contrastive Collaboration.
.- Adaptive Augmentation and Neighbor Contrastive Learning for Multi-Behavior Recommendation.
.- Automated Modeling of Influence Diversity with Graph Convolutional Network for Social Recommendation.
.- Contrastive Generator Generative Adversarial Networks for Sequential Recommendation.
.- Distribution-aware Diversification for Personalized Re-ranking in Recommendation.
.- KMIC: A Knowledge-aware Recommendation with Multivariate Intentions Contrastive Learning.
.- Logic Preference Fusion Reasoning on Recommendation.
.- MHGNN: Hybrid Graph Neural Network with Mixers for Multi-interest Session-aware Recommendation.
.- Mixed Augmentation Contrastive Learning for Graph Recommendation System.
.- Noise-Resistant Graph Neural Networks for Session-based Recommendation.
.- S2DNMF: A Self-supervised Deep Nonnegative Matrix Factorization Recommendation Model Incorporating Deep Latent Features of Network Structure.
.- Self-Filtering Residual Attention Network based on Multipair Information Fusion for Session-Based Recommendations.
.- TransRec: Learning Transferable Recommendation from Mixture-of-Modality Feedback.
.- VM-Rec: A Variational Mapping Approach for Cold-start User Recommendation.
.- Knowledge Graph.
.- Matching Tabular Data to Knowledge Graph based on Multi-level Scoring Filters for Table Entity Disambiguation.
.- Complex Knowledge Base Question Answering via Structure and Content Dual-driven Method.
.- EvoREG: Evolutional Modeling with Relation-Entity Dual-Guidance for Temporal Knowledge Graph Reasoning.
.- Federated Knowledge Graph Embedding Unlearning via Diffusion Model.
.- Functional Knowledge Graph Towards Knowledge Application and Data Management for General Users.
.- Hospital Outpatient Guidance System Based On Knowledge Graph.
.- TOP: Taxi Destination Prediction Based on Trajectory Knowledge Graph.
.- Type-based Neighborhood Aggregation for Knowledge Graph Alignment.
.- An Aggregation Procedure Enhanced Mechanism for GCN-based Knowledge Graph Completion Model by Leveraging Condensed Sampling and Attention Optimization.
.- Spatial and Temporal Data.
.- Capturing Fine and Coarse Grained User Preferences with Dual-Transformer for Next POI Recommendation.
.- Enhancing Spatio-Temporal Semantics with Contrastive Learning for Next POI Recommendation.
.- Distinguish the Indistinguishable: Spatial Personalized Transformer for Traffic Flow Forecast.
.- Meeting Pattern Detection from Trajectories in Road Network.
.- Speed Prediction of Multiple Traffic Scenarios with Local Fluctuation.
.- ST-TPFL: Towards Spatio-Temporal Traffic Flow Prediction Based on Topology Protected Federated Learning.
.- A Context-aware Distance Analysis Approach for Time Series.
.- Dual-view Stack State Learning Network for Attribute-based Container Location Assignment.
.- Efficient Coverage Query over Transition Trajectories.

Erscheinungsdatum
Reihe/Serie Lecture Notes in Computer Science
Zusatzinfo 139 Illustrations, color; 23 Illustrations, black and white; XVIII, 500 p. 162 illus., 139 illus. in color.
Verlagsort Singapore
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Theorie / Studium Algorithmen
Schlagworte Advanced database and Web applications • Block chain models and applications • Data engineering for big remote sensing data • Data Mining • Graph and social network analysis • Graph data, RDF, social networks • information extraction • Information Retrieval • knowledge graphs • machine learning • Multimedia Information Systems • Natural Language Processing • Parallel and distributed data management • query processing and optimization • Recommender Systems • representation learning • Security, privacy, and trust • spatial and temporal databases • Streams, complex event processing • Web search and meta-search
ISBN-10 981-97-7234-6 / 9819772346
ISBN-13 978-981-97-7234-6 / 9789819772346
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
29,99