The Mathematics of Machine Learning (eBook)
210 Seiten
Walter de Gruyter GmbH & Co.KG (Verlag)
978-3-11-128899-4 (ISBN)
This book is an introduction to machine learning, with a strong focus on the mathematics behind the standard algorithms and techniques in the field, aimed at senior undergraduates and early graduate students of Mathematics.
There is a focus on well-known supervised machine learning algorithms, detailing the existing theory to provide some theoretical guarantees, featuring intuitive proofs and exposition of the material in a concise and precise manner. A broad set of topics is covered, giving an overview of the field. A summary of the topics covered is: statistical learning theory, approximation theory, linear models, kernel methods, Gaussian processes, deep neural networks, ensemble methods and unsupervised learning techniques, such as clustering and dimensionality reduction.
This book is suited for students who are interested in entering the field, by preparing them to master the standard tools in Machine Learning. The reader will be equipped to understand the main theoretical questions of the current research and to engage with the field.
Dr. Maria Han Veiga,
Assistant professor of mathematics, Ohio State University, Ohio, USA
Prior to joining Ohio State, she was a postdoctoral fellow at the University of Michigan in Mathematics and Data Science (MIDAS). She obtained her PhD at the University of Zurich. Her research focuses on numerical analysis for hyperbolic partial differential equations and scientific machine learning.
Dr. François Ged
Postdoctoral fellow, University of Vienna, Austria
He obtained his PhD in Mathematics at the University of Zurich, Switzerland, after which he was a postdoc fellow at the École Polytechnique Fédérale de Lausanne. His research interests gravitate around the theory of deep learning and reinforcement learning, as well as mathematical population genetics and growth-fragmentation processes.
Erscheint lt. Verlag | 20.5.2024 |
---|---|
Sprache | englisch |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Mathematik / Informatik ► Mathematik | |
ISBN-10 | 3-11-128899-4 / 3111288994 |
ISBN-13 | 978-3-11-128899-4 / 9783111288994 |
Haben Sie eine Frage zum Produkt? |
Größe: 14,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich