Finding Communities in Social Networks Using Graph Embeddings (eBook)

eBook Download: PDF
2024 | 2024
IX, 177 Seiten
Springer Nature Switzerland (Verlag)
978-3-031-60916-9 (ISBN)

Lese- und Medienproben

Finding Communities in Social Networks Using Graph Embeddings - Mosab Alfaqeeh, David B. Skillicorn
Systemvoraussetzungen
192,59 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Community detection in social networks is an important but challenging problem. This book develops a new technique for finding communities that uses both structural similarity and attribute similarity simultaneously, weighting them in a principled way. The results outperform existing techniques across a wide range of measures, and so advance the state of the art in community detection. Many existing community detection techniques base similarity on either the structural connections among social-network users, or on the overlap among the attributes of each user. Either way loses useful information. There have been some attempts to use both structure and attribute similarity but success has been limited. We first build a large real-world dataset by crawling Instagram, producing a large set of user profiles. We then compute the similarity between pairs of users based on four qualitatively different profile properties: similarity of language used in posts, similarity of hashtags used (which requires extraction of content from them), similarity of images displayed (which requires extraction of what each image is 'about'), and the explicit connections when one user follows another. These single modality similarities are converted into graphs. These graphs have a common node set (the users) but different sets a weighted edges. These graphs are then connected into a single larger graph by connecting the multiple nodes representing the same user by a clique, with edge weights derived from a lazy random walk view of the single graphs. This larger graph can then be embedded in a geometry using spectral techniques. In the embedding, distance corresponds to dissimilarity so geometric clustering techniques can be used to find communities. The resulting communities are evaluated using the entire range of current techniques, outperforming all of them. Topic modelling is also applied to clusters to show that they genuinely represent users with similar interests. This can form the basis for applications such as online marketing, or key influence selection.



Mosab ALfaqeeh is a doctoral graduate of the School of Computing at Queen's. He works as a software developer.

David Skillicorn has worked extensively in adversarial data analytics, including the use of natural language processing and social network analysis. His work has applications in intelligence, policing, counterterrorism, and cybersecurity. He is the author of two hundred papers and several books, most recently 'Cyberspace, Data Analytics, and Policing' (Taylor and Francis).

Erscheint lt. Verlag 29.6.2024
Reihe/Serie Lecture Notes in Social Networks
Zusatzinfo IX, 177 p. 90 illus., 34 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Statistik
Schlagworte Clustering • community detection • Computer and Information Systems Applications • computer application in social and behavioral sciences • crawling to extract social network content and structure • machine learning • spectral graph embedding • topic modeling • typed social networks
ISBN-10 3-031-60916-6 / 3031609166
ISBN-13 978-3-031-60916-9 / 9783031609169
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
18,68