Deep Learning Theory and Applications -

Deep Learning Theory and Applications

5th International Conference, DeLTA 2024, Dijon, France, July 10–11, 2024, Proceedings, Part II
Buch | Softcover
XVII, 389 Seiten
2024
Springer International Publishing (Verlag)
978-3-031-66704-6 (ISBN)
80,24 inkl. MwSt

The two-volume set CCIS 2171 and 2172 constitutes the refereed papers from the 5th INternational Conference on Deep Learning Theory and Applications, DeLTA 2024, which took place in Dijon, France, during July 10-11, 2024. 

The 44 papers included in these proceedings were carefully reviewed and selected from a total of 70 submissions. They focus on topics such as deep learning and big data analytics; machine-learning and artificial intelligence, etc. 

Geometrical Realization for Time Series Forecasting.- Brains over Brawn: Small AI Labs in the Age of Datacenter-Scale Compute.- Time Series Prediction for Anomalies Detection in Concentrating Solar Power Plants Using Long Short-Term Memory N Networks.- Bayes Classification Using an Approximation to the Joint Probability Distribution of the Attributes.- Pollutant Source Localization Based on Siamese Neural Network Similarity Measure.- Automatic Emotion Analysis in Movies: Matteo Garrone's Dogman as a Case Study.- Empowering Cybersecurity: CyberShield AI Advanced Integration of Machine Learning and Deep Learning for Dynamic Ransomware Detection.- Empirical Performance of Deep Learning Models with Class Imbalance for Crop Disease Classification.- Automating the Conducting of Surveys Using Large Language Models.- Computer Vision Based Monitoring System for Flotation in Mining Industry 4.0.- Self-Supervised Learning for Robust Surface Defect Detection.- Efficient Deep Neural Network Verification with QAP-Based zkSNARK.- Version 8 of YOLO for Wildfire Detection.- Investigating a Semantic Similarity Loss Function for the Parallel Training of Abstractive and Extractive Scientific Document Summarizers.- Deep Learning-Based Preprocessing Tools for Turkish Natural Language Processing.- Skin Cancer Classification: A Comparison of CNN-Backbones for Feature-Extraction.- Multilingual Detection of Cyberbullying on Social Networks Using a Fine-Tuned GPT-3.5 Model.- Detecting Big-5 Personality Dimensions from Text Based on Large Language Models.- ME-ODAL: Mixture-of-Experts Ensemble of CNN Models for 3D Object Detection from Automotive LiDAR Point Clouds.- BitNet b1.58 Reloaded: State-of-the-Art Performance Also on Smaller Networks.- Deep Learning for Cattle Face Identification.- OBBabyFace: Oriented Bounding Box for Infant Face Detection.- EEG-Based Patient Independent Epileptic Seizure Detection Using GCN-BRF.- Predicting Components of a Target Value Versus Predicting the Target Value Directly.

Erscheinungsdatum
Reihe/Serie Communications in Computer and Information Science
Zusatzinfo XVII, 389 p. 125 illus., 115 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Artificial Intelligence • big-data analytics • Computer vision applications • convolutional neural networks • Deep Hierarchical Networks • Deep Metric Learning Methods • Deep Reinforcement Learning • Evolutionary Methods • generative adversarial networks • Graph representation learning • IoT and Smart Devices • Learning Deep Generative Models • machine learning • Meta-Learning and Deep Networks • Models and Algorithms • Natural language understanding • Object detection • Recurrent Neural Network • sentiment analysis • smart indexing
ISBN-10 3-031-66704-2 / 3031667042
ISBN-13 978-3-031-66704-6 / 9783031667046
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95