Toric Topology and Polyhedral Products (eBook)

eBook Download: PDF
2024 | 2024
VIII, 326 Seiten
Springer Nature Switzerland (Verlag)
978-3-031-57204-3 (ISBN)

Lese- und Medienproben

Toric Topology and Polyhedral Products -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book explores toric topology, polyhedral products and related mathematics from a wide range of perspectives, collectively giving an overview of the potential of the areas while contributing original research to drive the subject forward in interesting new directions. Contributions to this volume were written in connection to the thematic program Toric Topology and Polyhedral Products held at the Fields Institute from January-June 2020. 16 original conributions were inspired or influenced by the program.

Toric Topology arose as a subject in its own right about twenty-five years ago. It sits at the intersection of commutative algebra, topology, combinatorics, algebraic geometry, and symplectic and convex geometry. Polyhedral products are a functorial generalization of a construction that is at the centre of Toric Topology. They are of independent interest and unify several constructions that arise in a diverse range of areas, such as geometric group theory, homotopy theory, algebraic combinatorics and subspace arrangements.



Anthony Bahri is Professor of Mathematics at Rider University. He obtained his D. Phil. in 1980 from the University of Oxford and held postdoctoral positions at Purdue University and at Rutgers University. His research area in algebraic topology includes bordism theory, homotopy theory, polyhedral products, toric spaces and toric varieties, mainly from the topological point of view. 

Lisa Jeffrey is Professor of Mathematics at University of Toronto. She obtained her D.Phil.  in 1992 at University of Oxford (under the supervision of Michael Atiyah) and then held postdoctoral positions at IAS and Cambridge University.  She held a junior faculty position at Princeton University (1993-5) followed by a tenure-track position at McGill University (1995-8) before moving to her present position in 1998. Her research area is symplectic geometry and mathematical physics.

Taras Panov is Professor of Mathematics at Moscow State University. He obtained his PhD in 1999 at Moscow State University and then held postdoctoral positions at the University of Manchester and Osaka City University. His research area is cobordism theory, toric topology, geometry and topology of manifolds, and homotopy theory of polyhedral products. 

Don Stanley received his PhD from the University of Toronto in 1997. After postdoctoral positions in Europe and Canada he moved to the University of Regina where he is now a professor in the Department of Mathematics and Statistics. His thesis was on ring spectra and he subsequently worked on Lusternik-Schnirelmann category, rational homotopy theory and classifications problems in derived and abelian categories. These days his interests have shifted towards topological data analysis and using polyhedral products and other techniques to study which graded algebras are the cohomology of spaces.

Stephen Theriault is a Professor of Mathematics at the University of Southampton. Heearned a PhD at the University of Toronto in 1997. After having postdoctoral positions at MIT, the University of Illinois at Chicago and the University of Virginia, he held a position at the University of Aberdeen before moving to Southampton. His research area is homotopy theory, and he has done work on the homotopy theory of spheres and Moore spaces, Lie groups and gauge groups, manifolds and polyhedral products. 

Erscheint lt. Verlag 10.6.2024
Reihe/Serie Fields Institute Communications
Zusatzinfo VIII, 326 p. 86 illus., 22 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Algebraic Geometry • algebraic topology • Commutative rings and algebras • flag manifolds • Global Analysis and Analysis on Manifolds • Grassmannians • Loop Spaces • Manifolds and Cell Complexes • newton polyhedra • Okounkov Bodies • Schubert varieties • symplectic manifolds • Toric Topology
ISBN-10 3-031-57204-1 / 3031572041
ISBN-13 978-3-031-57204-3 / 9783031572043
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich