Embedding Knowledge Graphs with RDF2vec - Heiko Paulheim, Petar Ristoski, Jan Portisch

Embedding Knowledge Graphs with RDF2vec

Buch | Softcover
IX, 158 Seiten
2024
Springer International Publishing (Verlag)
978-3-031-30389-0 (ISBN)
48,14 inkl. MwSt

This book explains the ideas behind one of the most well-known methods for knowledge graph embedding of transformations to compute vector representations from a graph, known as RDF2vec. The authors describe its usage in practice, from reusing pre-trained knowledge graph embeddings to training tailored vectors for a knowledge graph at hand. They also demonstrate different extensions of RDF2vec and how they affect not only the downstream performance, but also the expressivity of the resulting vector representation, and analyze the resulting vector spaces and the semantic properties they encode.

Heiko Paulheim is a computer scientist and a full professor for Data Science at the University of Mannheim. His group conducts various projects around knowledge graphs, yielding, among others, the public knowledge graphs WebIsALOD, CaLiGraph, and DBkWik. Moreover, his group is concerned with using knowledge graphs in machine learning, which has lead to the development of the widespread RDF2vec method for knowledge graph embeddings. In the recent past, Heiko Paulheim also leads projects which are concerned with ethical, societal, and legal aspects of AI, including KareKoKI, which deals with the impact of price-setting AIs on antitrust legislation, and the ReNewRS project on ethical news recommenders.

 

Petar Ristoski is an applied researcher at eBay in San Jose, CA.

 

Jan Portisch is a PhD student at the University of Mannheim in cooperation with SAP SE - Business Technology Platform - One Domain Model.

Introduction.- From Word Embeddings to Knowledge Graph Embeddings.- RDF2vec Variants and Representations.- Tweaking RDF2vec.- RDF2vec at Scale.- Example Applications beyond Node Classification.- Link Prediction in Knowledge Graphs (and its Relation to RDF2vec).- Future Directions for RDF2vec.

Erscheinungsdatum
Reihe/Serie Synthesis Lectures on Data, Semantics, and Knowledge
Zusatzinfo IX, 158 p. 43 illus., 27 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 168 x 240 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Data Mining • dynamic knowledge graphs • Knowledge Graph Embeddings • knowledge representation in AI • Ontology Learning
ISBN-10 3-031-30389-X / 303130389X
ISBN-13 978-3-031-30389-0 / 9783031303890
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95