Privacy-Preserving Machine Learning (eBook)

A use-case-driven approach to building and protecting ML pipelines from privacy and security threats
eBook Download: EPUB
2024 | 1. Auflage
402 Seiten
Packt Publishing (Verlag)
978-1-80056-422-0 (ISBN)

Lese- und Medienproben

Privacy-Preserving Machine Learning -  Srinivasa Rao Aravilli
Systemvoraussetzungen
29,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

- In an era of evolving privacy regulations, compliance is mandatory for every enterprise
- Machine learning engineers face the dual challenge of analyzing vast amounts of data for insights while protecting sensitive information
- This book addresses the complexities arising from large data volumes and the scarcity of in-depth privacy-preserving machine learning expertise, and covers a comprehensive range of topics from data privacy and machine learning privacy threats to real-world privacy-preserving cases
- As you progress, you'll be guided through developing anti-money laundering solutions using federated learning and differential privacy
- Dedicated sections will explore data in-memory attacks and strategies for safeguarding data and ML models
- You'll also explore the imperative nature of confidential computation and privacy-preserving machine learning benchmarks, as well as frontier research in the field
- Upon completion, you'll possess a thorough understanding of privacy-preserving machine learning, equipping them to effectively shield data from real-world threats and attacks


Gain hands-on experience in data privacy and privacy-preserving machine learning with open-source ML frameworks, while exploring techniques and algorithms to protect sensitive data from privacy breaches Key FeaturesUnderstand machine learning privacy risks and employ machine learning algorithms to safeguard data against breachesDevelop and deploy privacy-preserving ML pipelines using open-source frameworksGain insights into confidential computing and its role in countering memory-based data attacksPurchase of the print or Kindle book includes a free PDF eBookBook Description- In an era of evolving privacy regulations, compliance is mandatory for every enterprise Machine learning engineers face the dual challenge of analyzing vast amounts of data for insights while protecting sensitive information This book addresses the complexities arising from large data volumes and the scarcity of in-depth privacy-preserving machine learning expertise, and covers a comprehensive range of topics from data privacy and machine learning privacy threats to real-world privacy-preserving cases As you progress, you ll be guided through developing anti-money laundering solutions using federated learning and differential privacy Dedicated sections will explore data in-memory attacks and strategies for safeguarding data and ML models You ll also explore the imperative nature of confidential computation and privacy-preserving machine learning benchmarks, as well as frontier research in the field Upon completion, you ll possess a thorough understanding of privacy-preserving machine learning, equipping them to effectively shield data from real-world threats and attacks What you will learnStudy data privacy, threats, and attacks across different machine learning phasesExplore Uber and Apple cases for applying differential privacy and enhancing data securityDiscover IID and non-IID data sets as well as data categoriesUse open-source tools for federated learning (FL) and explore FL algorithms and benchmarksUnderstand secure multiparty computation with PSI for large dataGet up to speed with confidential computation and find out how it helps data in memory attacksWho this book is for This comprehensive guide is for data scientists, machine learning engineers, and privacy engineers Prerequisites include a working knowledge of mathematics and basic familiarity with at least one ML framework (TensorFlow, PyTorch, or scikit-learn) Practical examples will help you elevate your expertise in privacy-preserving machine learning techniques ]]>
Erscheint lt. Verlag 24.5.2024
Vorwort Sam Hamilton
Sprache englisch
Themenwelt Informatik Netzwerke Sicherheit / Firewall
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Informatik Web / Internet
Naturwissenschaften
Technik
ISBN-10 1-80056-422-8 / 1800564228
ISBN-13 978-1-80056-422-0 / 9781800564220
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Praxishandbuch zu Krisenmanagement und Krisenkommunikation

von Holger Kaschner

eBook Download (2024)
Springer Fachmedien Wiesbaden (Verlag)
34,99
Methodische Kombination von IT-Strategie und IT-Reifegradmodell

von Markus Mangiapane; Roman P. Büchler

eBook Download (2024)
Springer Vieweg (Verlag)
42,99