A Multiplicative Tate Spectral Sequence for Compact Lie Group Actions - Alice Hedenlund, John Rognes

A Multiplicative Tate Spectral Sequence for Compact Lie Group Actions

Buch | Softcover
134 Seiten
2024
American Mathematical Society (Verlag)
978-1-4704-6878-1 (ISBN)
98,20 inkl. MwSt
We construct a multiplicative G-Tate spectral sequence for each R-module X in orthogonal G-spectra, with E2-page given by the Hopf algebra Tate cohomology of R[G]* with coefficients in π*(X).
Given a compact Lie group G and a commutative orthogonal ring spectrum R such that R[G]* = π*(R ? G+) is finitely generated and projective over π*(R), we construct a multiplicative G-Tate spectral sequence for each R-module X in orthogonal G-spectra, with E2-page given by the Hopf algebra Tate cohomology of R[G]* with coefficients in π*(X). Under mild hypotheses, such as X being bounded below and the derived page RE∞ vanishing, this spectral sequence converges strongly to the homotopy π*(XtG) of the G-Tate construction XtG = [EG ? F(EG+, X]G.

Alice Hedenlund, University of Oslo, Norway. John Rognes, University of Oslo, Norway.

1. Introduction
2. Tate Cohomology for Hopf Algebras
3. Homotopy Groups of Orthogonal $G$-Spectra
4. Sequences of Spectra and Spectral Sequences
5. The $G$-Homotopy Fixed Point Spectral Sequence
6. The $G$-Tate Spectral Sequence

Erscheinungsdatum
Reihe/Serie Memoirs of the American Mathematical Society ; Volume: 294 Number: 1468
Verlagsort Providence
Sprache englisch
Maße 178 x 254 mm
Gewicht 118 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 1-4704-6878-6 / 1470468786
ISBN-13 978-1-4704-6878-1 / 9781470468781
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
61,00
Nielsen Methods, Covering Spaces, and Hyperbolic Groups

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2024)
De Gruyter (Verlag)
109,95