Reshaping Convex Polyhedra (eBook)
XIV, 243 Seiten
Springer Nature Switzerland (Verlag)
978-3-031-47511-5 (ISBN)
The focus of this monograph is converting-reshaping-one 3D convex polyhedron to another via an operation the authors call 'tailoring.' A convex polyhedron is a gem-like shape composed of flat facets, the focus of study since Plato and Euclid. The tailoring operation snips off a corner (a 'vertex') of a polyhedron and sutures closed the hole. This is akin to Johannes Kepler's 'vertex truncation,' but differs in that the hole left by a truncated vertex is filled with new surface, whereas tailoring zips the hole closed. A powerful 'gluing' theorem of A.D. Alexandrov from 1950 guarantees that, after closing the hole, the result is a new convex polyhedron. Given two convex polyhedra P, and Q inside P, repeated tailoring allows P to be reshaped to Q. Rescaling any Q to fit inside P, the result is universal: any P can be reshaped to any Q. This is one of the main theorems in Part I, with unexpected theoretical consequences.
Part II carries out a systematic study of 'vertex-merging,' a technique that can be viewed as a type of inverse operation to tailoring. Here the start is P which is gradually enlarged as much as possible, by inserting new surface along slits. In a sense, repeated vertex-merging reshapes P to be closer to planarity. One endpoint of such a process leads to P being cut up and 'pasted' inside a cylinder. Then rolling the cylinder on a plane achieves an unfolding of P. The underlying subtext is a question posed by Geoffrey Shephard in 1975 and already implied by drawings by Albrecht Dürer in the 15th century: whether every convex polyhedron can be unfolded to a planar 'net.' Toward this end, the authors initiate an exploration of convexity on convex polyhedra, a topic rarely studied in the literature but with considerable promise for future development.
This monograph uncovers new research directions and reveals connections among several, apparently distant, topics in geometry: Alexandrov's Gluing Theorem, shortest paths and cut loci, Cauchy's Arm Lemma, domes, quasigeodesics, convexity, and algorithms throughout. The interplay between these topics and the way the main ideas develop throughout the book could make the 'journey' worthwhile for students and researchers in geometry, even if not directly interested in specific topics. Parts of the material will be of interest and accessible even to undergraduates. Although the proof difficulty varies from simple to quite intricate, with some proofs spanning several chapters, many examples and 125 figures help ease the exposition and illustrate the concepts.
Joseph O'Rourke is Professor at Smith College. Prior to joining Smith in 1988 to found and chair the computer science department, Joseph O'Rourke was an assistant and then associate professor at Johns Hopkins University. His research is in the field of computational geometry. In 2001, he was awarded the NSF Director's Award for Distinguished Teaching Scholars. He is also a professor of mathematics.
Costin Vîlcu is affiliated with the Simion Stoilow Institute of Mathematics of the Romanian Academy. His research interests include geometry of Alexandrov surfaces and intrinsic geometry of convex surfaces, including polyhedral convex surfaces.
Erscheint lt. Verlag | 28.2.2024 |
---|---|
Zusatzinfo | XIV, 243 p. 117 illus., 116 illus. in color. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Schlagworte | Alexandrov Gluing Theorem • convex polyhedra • digon-tailoring • tailoring operation • vertex-merging |
ISBN-10 | 3-031-47511-9 / 3031475119 |
ISBN-13 | 978-3-031-47511-5 / 9783031475115 |
Haben Sie eine Frage zum Produkt? |
Größe: 12,4 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich