Mastering OpenTelemetry and Observability - Steve Flanders

Mastering OpenTelemetry and Observability

Enhancing Application and Infrastructure Performance and Avoiding Outages

(Autor)

Buch | Softcover
368 Seiten
2024
John Wiley & Sons Inc (Verlag)
978-1-394-25312-8 (ISBN)
59,20 inkl. MwSt
Discover the power of open source observability for your enterprise environment

In Mastering Observability and OpenTelemetry: Enhancing Application and Infrastructure Performance and Avoiding Outages, accomplished engineering leader and open source contributor Steve Flanders unlocks the secrets of enterprise application observability with a comprehensive guide to OpenTelemetry (OTel). Explore how OTel transforms observability, providing a robust toolkit for capturing and analyzing telemetry data across your environment.

You will learn how OTel delivers unmatched flexibility, extensibility, and vendor neutrality, freeing you from vendor lock-in and enabling data sovereignty and portability. You will also discover:



Comprehensive coverage of observability issues and technology: Dive deep into the world of observability and gain a comprehensive understanding of observability fundamentals with practical insights and real-world use cases.
Practical guidance: From instrumentation techniques to advanced tracing strategies, gain the skills needed to create highly observable systems. Learn how to deploy and configure OTel, even in challenging brownfield environments, with step-by-step instructions and hands-on exercises.
An opportunity for community contributions and communication: Join the OTel community, including end-users, vendors, and cloud providers, and shape the future of observability while connecting with experts and peers.

Whether you are a novice or a seasoned professional, Mastering Observability and OpenTelemetry is your roadmap to troubleshooting availability and performance problems by learning to detect anomalies, interpret data, and proactively optimize performance in your enterprise environment. Embark on your journey to observability mastery today!

STEVE FLANDERS is a Senior Director of Engineering at Splunk, a Cisco company. Steve is one of the founding members of the OpenTelemetry project.

Foreword xiii

Introduction xiv

The Mastering Series xvi

Chapter 1 What Is Observability? 1

Definition 1

Background 4

Cloud Native Era 4

Monitoring Compared to Observability 5

Metadata 8

Dimensionality 9

Cardinality 9

Semantic Conventions 10

Data Sensitivity 10

Signals 10

Metrics 10

Logs 13

Traces 14

Other Signals 20

Collecting Signals 20

Instrumentation 21

Push Versus Pull Collection 22

Data Collection 23

Sampling Signals 26

Observability 27

Platforms 27

Application Performance Monitoring 28

The Bottom Line 28

Notes 30

Chapter 2 Introducing OpenTelemetry! 31

Background 31

Observability Pain Points 31

The Rise of Open Source Software 34

Introducing OpenTelemetry 35

OpenTelemetry Components 37

OpenTelemetry Concepts 48

Roadmap 50

The Bottom Line 50

Notes 51

Chapter 3 Getting Started with the Astronomy Shop 53

Background 53

Architecture 54

Prerequisites 54

Getting Started 55

Accessing the Astronomy Shop 57

Accessing Telemetry Data 57

Beyond the Basics 58

Configuring Load Generation 58

Configuring Feature Flags 59

Configuring Tests Built from Traces 60

Configuring the OTel Collector 60

Configuring OTel Instrumentation 62

Troubleshooting Astronomy Shop 62

Astronomy Shop Scenarios 63

Troubleshooting Errors 63

Troubleshooting Availability 69

Troubleshooting Performance 70

Troubleshooting Telemetry 74

The Bottom Line 75

Notes 76

Chapter 4 Understanding the OpenTelemetry Specification 77

Background 77

API Specification 79

API Definition 80

API Context 80

API Signals 81

API Implementation 82

SDK Specification 82

SDK Definition 83

SDK Signals 83

SDK Implementation 84

Data Specification 84

Data Models 86

Data Protocols 88

Data Semantic Conventions 88

Data Compatibility 89

General Specification 90

The Bottom Line 91

Notes 92

Chapter 5 Managing the OpenTelemetry Collector 93

Background 94

Deployment Modes 95

Agent Mode 96

Gateway Mode 98

Reference Architectures 100

The Basics 101

The Binary 103

Sizing 103

Components 104

Configuration 106

Receivers and Exporters 115

Processors 116

Extensions 126

Connectors 127

Observing 128

Relevant Metrics 128

Health Check Extension 131

zPages Extension 131

Troubleshooting 134

Out of Memory Crashes 134

Data Not Being Received or Exported 134

Performance Issues 135

Beyond the Basics 135

Distributions 135

Securing 137

Management 138

The Bottom Line 140

Notes 141

Chapter 6 Leveraging OpenTelemetry Instrumentation 143

Environment Setup 144

Python Trace Instrumentation 149

Automatic Instrumentation 150

Manual Instrumentation 157

Programmatic Instrumentation 163

Mixing Automatic and Manual Trace Instrumentation 166

Python Metrics Instrumentation 167

Automatic Instrumentation 168

Manual Instrumentation 169

Programmatic Instrumentation 174

Mixing Automatic and Manual Metric Instrumentation 176

Python Log Instrumentation 178

Manual Metadata Enrichment 179

Trace Correlation 181

Language Considerations 183

NET 184

Java 184

Go 184

Node js 185

Deployment Models 185

Distributions 185

The Bottom Line 186

Notes 187

Chapter 7 Adopting OpenTelemetry 189

The Basics 189

Why OTel and Why Now? 190

Where to Start? 191

General Process 192

Data Collection 193

Instrumentation 195

Production Readiness 196

Maturity Framework 197

Brownfield Deployment 198

Data Collection 198

Instrumentation 200

Dashboards and Alerts 202

Greenfield Deployment 204

Data Collection 204

Instrumentation 208

Other Considerations 208

Administration and Maintenance 208

Environments 211

Semantic Conventions 212

The Future 213

The Bottom Line 213

Notes 214

Chapter 8 The Power of Context and Correlation 215

Background 215

Context 217

OTel Context 219

Trace Context 221

Resource Context 223

Logic Context 224

Correlation 225

Time Correlation 225

Context Correlation 226

Trace Correlation 228

Metric Correlation 230

The Bottom Line 230

Notes 231

Chapter 9 Choosing an Observability Platform 233

Primary Considerations 233

Platform Capabilities 235

Marketing Versus Reality 237

Price, Cost, and Value 238

Observability Fragmentation 241

Primary Factors 242

Build, Buy, or Manage 242

Licensing, Operations, and Deployment 244

OTel Compatibility and Vendor Lock-In 244

Stakeholders and Company Culture 245

Implementation Basics 246

Administration 247

Usage 248

Maturity Framework 248

The Bottom Line 250

Notes 250

Chapter 10 Observability Antipatterns and Pitfalls 251

Telemetry Data Missteps 251

Mixing Instrumentation Libraries Scenario 253

Automatic Instrumentation Scenario 253

Custom Instrumentation Scenario 254

Component Configuration Scenario 255

Performance Overhead Scenario 255

Resource Allocation Scenario 256

Security Considerations Scenario 256

Monitoring and Maintenance Scenario 257

Observability Platform Missteps 258

Vendor Lock-in Scenario 260

Fragmented Tooling Scenario 260

Tool Fatigue Scenario 261

Inadequate Scalability Scenario 261

Data Overload Scenario 262

Company Culture Implications 264

Lack of Leadership Support Scenario 265

Resistance to Change Scenario 266

Collaboration and Alignment Scenario 266

Goals and Success Criteria Scenario 267

Standardization and Consistency Scenario 268

Incentives and Recognition Scenario 268

Feedback and Improvement Scenario 269

Prioritization Framework 270

The Bottom Line 272

Notes 273

Chapter 11 Observability at Scale 275

Understanding the Challenges 275

Volume and Velocity of Telemetry Data 276

Distributed System Complexity 278

Observability Platform Complexity 281

Infrastructure and Resource Constraints 281

Strategies for Scaling Observability 282

Elasticity, Elasticity, Elasticity! 282

Leverage Cloud Native Technologies 284

Filter, Sample, and Aggregate 286

Anomaly Detection and Predictive Analytics 290

Emerging Technologies and Methodologies 291

Best Practices for Managing Scale 292

General Recommendations 292

Instrumentation and Data Collection 293

Observability Platform 293

The Bottom Line 294

Notes 295

Chapter 12 The Future of Observability 297

Challenges and Opportunities 297

Cost 297

Complexity 299

Compliance 300

Code 301

Emerging Trends and Innovations 302

Artificial Intelligence 303

Observability as Code 304

Service Mesh 305

eBPF 306

The Future of OpenTelemetry 307

Stabilization and Expansion 308

Expanded Signal Support 308

Unified Query Language 310

Community-driven Innovation 310

The Bottom Line 311

Notes 311

Appendix A The Bottom Line 313

Chapter 1: What Is Observability? 313

Chapter 2: Introducing OpenTelemetry! 315

Chapter 3: Getting Started with the Astronomy Shop 316

Chapter 4: Understanding the OpenTelemetry Specification 317

Chapter 5: Managing the OpenTelemetry Collector 318

Chapter 6: Leveraging OpenTelemetry Instrumentation 320

Chapter 7: Adopting OpenTelemetry 321

Chapter 8: The Power of Context and Correlation 323

Chapter 9: Choosing an Observability Platform 324

Chapter 10: Observability Antipatterns and Pitfalls 326

Chapter 11: Observability at Scale 327

Chapter 12: The Future of Observability 328

Appendix B Introduction 329

Chapter 2: Introducing OpenTelemetry! 330

OpenTelemetry Concepts > Roadmap 330

Chapter 3: Getting Started with the Astronomy Shop 330

Background > Architecture 330

Chapter 5: Managing the OpenTelemetry Collector 332

Background 332

The Basics > Components 332

Chapter 12: The Future of Observability 340

Challenges and Opportunities > Code 340

Notes 341

Index 343

Erscheinungsdatum
Reihe/Serie Tech Today
Verlagsort New York
Sprache englisch
Maße 188 x 234 mm
Gewicht 522 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Netzwerke
Informatik Office Programme Outlook
ISBN-10 1-394-25312-5 / 1394253125
ISBN-13 978-1-394-25312-8 / 9781394253128
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95