Artificial Intelligence for Subsurface Characterization and Monitoring
Elsevier - Health Sciences Division (Verlag)
978-0-443-23517-7 (ISBN)
- Noch nicht erschienen (ca. Januar 2025)
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
Aria Abubakar is a senior R&D manager and scientist/engineer with more than 20 years of academic and industry experience. Aria has a variety of assignments in research, engineering (hardware), and software organization. He is currently the Head of Data Science & Scientific Advisor for Digital Subsurface Solutions at SLB based in the United States. He received his MSc degree in electrical engineering and PhD degree in computational sciences from Delft University of Technology in Delft, the Netherlands. He was the 2020 SEG-AAPG Distinguish Lecturer and the 2014 SEG North America Honorary Lecturer. Aria is the recipient of 2022 Conrad Schlumberger Award of EAGE and 2022 Honorary Membership Award of SEG. He holds over 50 patents/patent applications and has published 5 books and book chapters, over 120 peer-reviewed scientific articles, over 250 peer-reviewed conference papers, and over 50 conference abstracts.
Part I Deep learning for data enrichment
1. Rejuvenating legacy data by digitizing raster logs
2. Information extraction from unstructured well reports
Part II Deep learning applied to well log data
3. Well log data QC and processing
4. Automatic well marker picking
5. Automatic log interpretationPart III Deep learning applied to seismic data
6. Intelligent processing for clearer seismic images
7. Seismic interpretation with improved quality and efficiency
Part IV Deep learning for data integration
8. Automatic seismic-well tie
9. Rock property inversion and validation
Part V Deep learning in time lapse scenarios
10. Time-lapse seismic data repeatability enforcement
11. Direct property prediction from premigration seismic data
Erscheint lt. Verlag | 31.1.2025 |
---|---|
Verlagsort | Philadelphia |
Sprache | englisch |
Maße | 152 x 229 mm |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Technik ► Bergbau | |
Technik ► Elektrotechnik / Energietechnik | |
ISBN-10 | 0-443-23517-1 / 0443235171 |
ISBN-13 | 978-0-443-23517-7 / 9780443235177 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich