Two-dimensional Single-Variable Cubic Nonlinear Systems, Vol II - Albert C. J. Luo

Two-dimensional Single-Variable Cubic Nonlinear Systems, Vol II

A Crossing-variable Cubic Vector Field
Buch | Hardcover
IX, 240 Seiten
2024
Springer International Publishing (Verlag)
978-3-031-57107-7 (ISBN)
171,19 inkl. MwSt

This book, the second of 15 related monographs, presents systematically a theory of cubic nonlinear systems with single-variable vector fields. The cubic vector fields are of crossing-variables, which are discussed as the second part. The 1-dimensional flow singularity and bifurcations are discussed in such cubic systems. The appearing and switching bifurcations of the 1-dimensional flows in such 2-diemnsional cubic systems are for the first time to be presented. Third-order parabola flows are presented, and the upper and lower saddle flows are also presented. The infinite-equilibriums are the switching bifurcations for the first and third-order parabola flows, and inflection flows with the first source and sink flows, and the upper and lower-saddle flows.  The appearing bifurcations in such cubic systems includes inflection flows and third-order parabola flows, upper and lower-saddle flows. 

Readers will learn new concepts, theory, phenomena, and analytic techniques, including
Constant and crossing-cubic systems
Crossing-linear and crossing-cubic systems
Crossing-quadratic and crossing-cubic systems
Crossing-cubic and crossing-cubic systems
Appearing and switching bifurcations
Third-order centers and saddles
Parabola-saddles and inflection-saddles
Homoclinic-orbit network with centers
Appearing bifurcations

Dr. Albert C. J. Luo is Distinguished Research Professor in the Department of Mechanical Engineering, Southern Illinois University Edwardsville, Edwardsville, IL.

Constant and Self-Cubic Vector fields.- Self-linear and Self-cubic vector fields.- Self-quadratic and self-cubic vector fields .- Two self-cubic vector fields.

Erscheinungsdatum
Zusatzinfo IX, 240 p. 44 illus., 40 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Technik
Schlagworte 1-dimensional flow singularity and bifurcations • Constant and crossing-cubic systems • Self-linear and crossing-cubic systems • Self-quadratic and crossing-cubic systems • Third-order parabola and inflection flows
ISBN-10 3-031-57107-X / 303157107X
ISBN-13 978-3-031-57107-7 / 9783031571077
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95