Platform and Model Design for Responsible AI - Amita Kapoor, Sharmistha Chatterjee

Platform and Model Design for Responsible AI (eBook)

Design and build resilient, private, fair, and transparent machine learning models
eBook Download: EPUB
2023
516 Seiten
Packt Publishing (Verlag)
978-1-80324-977-3 (ISBN)
Systemvoraussetzungen
47,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

AI algorithms are ubiquitous and used for tasks, from recruiting to deciding who will get a loan. With such widespread use of AI in the decision-making process, it's necessary to build an explainable, responsible, transparent, and trustworthy AI-enabled system. With Platform and Model Design for Responsible AI, you'll be able to make existing black box models transparent.
You'll be able to identify and eliminate bias in your models, deal with uncertainty arising from both data and model limitations, and provide a responsible AI solution. You'll start by designing ethical models for traditional and deep learning ML models, as well as deploying them in a sustainable production setup. After that, you'll learn how to set up data pipelines, validate datasets, and set up component microservices in a secure and private way in any cloud-agnostic framework. You'll then build a fair and private ML model with proper constraints, tune the hyperparameters, and evaluate the model metrics.
By the end of this book, you'll know the best practices to comply with data privacy and ethics laws, in addition to the techniques needed for data anonymization. You'll be able to develop models with explainability, store them in feature stores, and handle uncertainty in model predictions.


Craft ethical AI projects with privacy, fairness, and risk assessment features for scalable and distributed systems while maintaining explainability and sustainabilityPurchase of the print or Kindle book includes a free PDF eBookKey FeaturesLearn risk assessment for machine learning frameworks in a global landscapeDiscover patterns for next-generation AI ecosystems for successful product designMake explainable predictions for privacy and fairness-enabled ML trainingBook DescriptionAI algorithms are ubiquitous and used for tasks, from recruiting to deciding who will get a loan. With such widespread use of AI in the decision-making process, it s necessary to build an explainable, responsible, transparent, and trustworthy AI-enabled system. With Platform and Model Design for Responsible AI, you ll be able to make existing black box models transparent. You ll be able to identify and eliminate bias in your models, deal with uncertainty arising from both data and model limitations, and provide a responsible AI solution. You ll start by designing ethical models for traditional and deep learning ML models, as well as deploying them in a sustainable production setup. After that, you ll learn how to set up data pipelines, validate datasets, and set up component microservices in a secure and private way in any cloud-agnostic framework. You ll then build a fair and private ML model with proper constraints, tune the hyperparameters, and evaluate the model metrics. By the end of this book, you ll know the best practices to comply with data privacy and ethics laws, in addition to the techniques needed for data anonymization. You ll be able to develop models with explainability, store them in feature stores, and handle uncertainty in model predictions.What you will learnUnderstand the threats and risks involved in ML modelsDiscover varying levels of risk mitigation strategies and risk tiering toolsApply traditional and deep learning optimization techniques efficientlyBuild auditable and interpretable ML models and feature storesUnderstand the concept of uncertainty and explore model explainability toolsDevelop models for different clouds including AWS, Azure, and GCPExplore ML orchestration tools such as Kubeflow and Vertex AIIncorporate privacy and fairness in ML models from design to deploymentWho this book is forThis book is for experienced machine learning professionals looking to understand the risks and leakages of ML models and frameworks, and learn to develop and use reusable components to reduce effort and cost in setting up and maintaining the AI ecosystem.]]>
Erscheint lt. Verlag 28.4.2023
Sprache englisch
Themenwelt Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-80324-977-3 / 1803249773
ISBN-13 978-1-80324-977-3 / 9781803249773
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Build memory-efficient cross-platform applications using .NET Core

von Trevoir Williams

eBook Download (2024)
Packt Publishing (Verlag)
29,99
Learn asynchronous programming by building working examples of …

von Carl Fredrik Samson

eBook Download (2024)
Packt Publishing Limited (Verlag)
29,99