Digital Forensics and Cyber Crime -

Digital Forensics and Cyber Crime

14th EAI International Conference, ICDF2C 2023, New York City, NY, USA, November 30, 2023, Proceedings, Part I
Buch | Softcover
XV, 325 Seiten
2024 | 2024
Springer International Publishing (Verlag)
978-3-031-56579-3 (ISBN)
80,24 inkl. MwSt
The two-volume set LNICST 570 and 571 constitutes the refereed post-conference proceedings of the 14th EAI International Conference on Digital Forensics and Cyber Crime, ICDF2C 2023, held in New York City, NY, USA, during November 30, 2023.

The 41 revised full papers presented in these proceedings were carefully reviewed and selected from 105 submissions. The papers are organized in the following topical sections:
Volume I:
Crime profile analysis and Fact checking, Information hiding and Machine learning.

Volume II: 
Password, Authentication and Cryptography, Vulnerabilities and Cybersecurity and forensics.

Crime profile analysis and Fact checking.- A Canary in the Voting Booth: Attacks on a Virtual Voting Machine.- Catch Me if You Can: Analysis of Digital Devices  Artifacts Used in Murder Cases.- Enhancing Incident Management by an improved Understanding of Data Exfiltration: Definition, Evaluation, Review.- Identify Users on Dating Applications: A Forensic Perspective.- Removing Noise (Opinion Messages) For Fake News De-tection In Discussion Forum Using BERT Model.- Retruth Reconnaissance: A Digital Forensic Analysis of Truth Social.- Information hiding.- A Multi-Carrier Information Hiding Algorithm Based on Dual 3D Model Spectrum Analysis.- A Multi-Carrier Information Hiding Algorithm Based on Layered Compression of 3D Point Cloud Model.- Point cloud model information hiding algorithm based on multi-scale transformation and composite operator.- An Information Hiding Algorithm Baed on Multi-Carrier Fusion State Partitioning of 3D Models.- Machine learning.- CCBA: Code Poisoning-based Clean-Label Covert Backdoor Attack against DNNs.- Decoding HDF5: Machine Learning File Forensics and Data Injection.- DEML: Data-enhanced Meta-Learning Method for IoT APT Traffic Detection.- Finding Forensic Artefacts in Long-term Frequency Band Occupancy Measurements using Statistics and Machine Learning.- IoT Malicious Traffic Detection based on Federated Learning.- Persistent Clean-label Backdoor on Graph-based Semi-supervised Cybercrime Detection.- Backdoor Learning on Siamese Networks using Physical Triggers: FaceNet as a Case Study.- Research on Feature Selection Algorithm of Energy Curve.- Power Analysis Attack Based on GA-based Ensemble Learning.

Erscheinungsdatum
Reihe/Serie Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
Zusatzinfo XV, 325 p. 129 illus., 101 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Netzwerke Sicherheit / Firewall
Schlagworte Applications • Computer Science • conference proceedings • Informatics • Research
ISBN-10 3-031-56579-7 / 3031565797
ISBN-13 978-3-031-56579-3 / 9783031565793
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Das Lehrbuch für Konzepte, Prinzipien, Mechanismen, Architekturen und …

von Norbert Pohlmann

Buch | Softcover (2022)
Springer Vieweg (Verlag)
34,99
Management der Informationssicherheit und Vorbereitung auf die …

von Michael Brenner; Nils gentschen Felde; Wolfgang Hommel

Buch (2024)
Carl Hanser (Verlag)
69,99

von Chaos Computer Club

Buch | Softcover (2024)
KATAPULT Verlag
28,00