Real Numbers, Generalizations of the Reals, and Theories of Continua
Springer (Verlag)
978-0-7923-2689-2 (ISBN)
With the exception of E.W. Hobson's essay, which is concerned with the ideas of Cantor and Dedekind and their reception at the turn of the century, the papers in the present collection are either concerned with or are contributions to, the latter groups of studies. All the contributors are outstanding authorities in their respective fields, and the essays, which are directed to historians and philosophers of mathematics as well as to mathematicians who are concerned with the foundations of their subject, are preceded by a lengthy historical introduction.
I. The Cantor-Dedekind Philosophy and Its Early Reception.- On the Infinite and the Infinitesimal in Mathematical Analysis (Presidential Address to the London Mathematical Society, November 13, 1902).- II. Alternative Theories of Real Numbers.- A Constructive Look at the Real Number Line.- The Surreals and Reals.- III. Extensions and Generalizations of the Ordered Field of Reals: The Late 19th-Century Geometrical Motivation.- Veronese’s Non-Archimedean Linear Continuum.- Review of Hilbert’s Foundations of Geometry (1902): Translated for the American Mathematical Society by E. V. Huntington (1903).- On Non-Archimedean Geometry. Invited Address to the 4th International Congress of Mathematicians, Rome, April 1908. Translated by Mathieu Marion (with editorial notes by Philip Ehrlich).- IV. Extensions and Generalizations of the Reals: Some 20th-Century Developments.- Calculation, Order and Continuity.- The Hyperreal Line.- All Numbers Great and Small.- Rational and Real Ordinal Numbers.- Index of Names.
Erscheint lt. Verlag | 30.9.1994 |
---|---|
Reihe/Serie | Synthese Library ; 242 |
Zusatzinfo | XXXII, 288 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Maße | 156 x 234 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Mathematik / Informatik ► Mathematik ► Logik / Mengenlehre | |
ISBN-10 | 0-7923-2689-X / 079232689X |
ISBN-13 | 978-0-7923-2689-2 / 9780792326892 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich