Für diesen Artikel ist leider kein Bild verfügbar.

Real Analysis

A First Course

(Autor)

Buch | Hardcover
304 Seiten
1996
Pearson (Verlag)
978-0-201-83210-5 (ISBN)
117,55 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
This text provides the theory behind single variable calculus, including the standard topics on sequences, continuity, differentiation, integration and infinite series. It takes a rigorous approach to the subject, building up student confidence with exercises.
This text provides the theory behind single-variable calculus, and includes the topics typically required, such as sequences, continuity, differentiation, integration, and infinite series. The last chapter introduces point-set topology. The author presents his material in a clear, uncluttered manner, keeping a narrative style while focusing on the basic ideas of real analysis.

1. Real Numbers.


What is a Real Number?



The Completeness Axiom.



Some Miscellaneous Results.



Countable and Uncountable Sets.



The Uncountability of the Set of Real Numbers.



2. Sequences.


Convergent Sequences.



Algebraic Properties and Monotone Sequences.



Cauchy Sequences.



The Bolzano-Weierstrass Theorem.



3. Limits.


The Limit of a Function.



The Algebra of Limits.



One-sided Limits and Infinite Limits.



4. Continuity.


Continuous Functions.



Intermediate and Extreme Values.



Monotone Functions and Inverse Functions.



Uniform Continuity.



5. Differentiation.


The Derivative of a Function.



The Chain Rule.



Further Results on Derivatives.



The Mean Value Theorem.



L'Hôpital's Rule.



6. Integration.


The Riemann Integral.



Properties of the Riemann Integral.



Types of Riemann Integrable Functions.



The Fundamental Theorem of Calculus.



Additional Algebraic Properties.



7. Infinite Series.


Convergence of Infinite Series.



Two Classes of Infinite Series.



The Comparision Tests.



Absolute Convergence.



The Root and Ratio Tests.



8. Sequences and Series of Functions.


Sequences of Functions.



Uniform Convergence.



Uniform Convergence and Inherited Properties.



Series of Functions.



Two Miscellaneous Results.



Power Series.



Taylor Series.



9. Point-Set Topology.


Open and Closed Sets.



Limit Points.



Compact Sets.



The Heine-Borel Theorem.



Continuous Functions.



Continuous Functions and Compact Sets.



10. Some Deeper Results.


The Set of Points of Continuity of a Function.



The Baire Category Theorem.



Baire Class One Functions.



Continuity Properties of Baire One Functions.

Erscheint lt. Verlag 16.9.1996
Sprache englisch
Gewicht 546 g
Themenwelt Mathematik / Informatik Mathematik Analysis
ISBN-10 0-201-83210-0 / 0201832100
ISBN-13 978-0-201-83210-5 / 9780201832105
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch (2022)
Springer Spektrum (Verlag)
79,99