Python Debugging for AI, Machine Learning, and Cloud Computing - Dmitry Vostokov

Python Debugging for AI, Machine Learning, and Cloud Computing (eBook)

A Pattern-Oriented Approach

(Autor)

eBook Download: PDF
2023 | First Edition
XXI, 233 Seiten
Apress (Verlag)
978-1-4842-9745-2 (ISBN)
Systemvoraussetzungen
52,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book is for those who wish to understand how Python debugging is and can be used to develop robust and reliable AI, machine learning, and cloud computing software. It will teach you a novel pattern-oriented approach to diagnose and debug abnormal software structure and behavior.

The book begins with an introduction to the pattern-oriented software diagnostics and debugging process that, before performing Python debugging, diagnoses problems in various software artifacts such as memory dumps, traces, and logs. Next, you'll learn to use various debugging patterns through Python case studies that model abnormal software behavior. You'll also be exposed to Python debugging techniques specific to cloud native and machine learning environments and explore how recent advances in AI/ML can help in Python debugging. Over the course of the book, case studies will show you how to resolve issues around environmental problems, crashes, hangs, resource spikes, leaks, and performance degradation. This includes tracing, logging, and analyziing memory dumps using native WinDbg and GDB debuggers. 

Upon completing this book, you will have the knowledge and tools needed to employ Python debugging in the development of AI, machine learning, and cloud computing applications.

What You Will Learn

  • Employ a pattern-oriented approach to Python debugging that starts with diagnostics of common software problems
  • Use tips and tricks to get the most out of popular IDEs, notebooks, and command-line Python debugging
  • Understand Python internals for interfacing with operating systems and external modules
  • Perform Python memory dump analysis, tracing, and logging

Who This Book Is For

Software developers, AI/ML engineers, researchers, data engineers, as well as MLOps and DevOps professionals.

Dmitry Vostokov is an internationally recognized expert, speaker, educator, scientist, inventor, and author. He founded the pattern-oriented software diagnostics, forensics, and prognostics discipline (Systematic Software Diagnostics) and Software Diagnostics Institute (DA+TA: DumpAnalysis.org + TraceAnalysis.org). Vostokov has also authored multiple books on software diagnostics, anomaly detection and analysis, software, and memory forensics, root cause analysis and problem-solving, memory dump analysis, debugging, software trace and log analysis, reverse engineering, and malware analysis. He has over thirty years of experience in software architecture, design, development, and maintenance in various industries, including leadership, technical, and people management roles. In his spare time, he presents multiple topics on Debugging.TV and explores Software Narratology and its further development as Narratology of Things and Diagnostics of Things (DoT), Software Pathology, and Quantum Software Diagnostics. His current interest areas are theoretical software diagnostics and its mathematical and computer science foundations, application of formal logic, artificial intelligence, machine learning, and data mining to diagnostics and anomaly detection, software diagnostics engineering and diagnostics-driven development, diagnostics workflow, and interaction. Recent interest areas also include cloud native computing, security, automation, functional programming, applications of category theory to software development and big data, and artificial intelligence diagnostics.
This book is for those who wish to understand how Python debugging is and can be used to develop robust and reliable AI, machine learning, and cloud computing software. It will teach you a novel pattern-oriented approach to diagnose and debug abnormal software structure and behavior.The book begins with an introduction to the pattern-oriented software diagnostics and debugging process that, before performing Python debugging, diagnoses problems in various software artifacts such as memory dumps, traces, and logs. Next, you ll learn to use various debugging patterns through Python case studies that model abnormal software behavior. You ll also be exposed to Python debugging techniques specific to cloud native and machine learning environments and explore how recent advances in AI/ML can help in Python debugging. Over the course of the book, case studies will show you how to resolve issues around environmental problems, crashes, hangs, resource spikes, leaks, and performancedegradation. This includes tracing, logging, and analyzing memory dumps using native WinDbg and GDB debuggers. Upon completing this book, you will have the knowledge and tools needed to employ Python debugging in the development of AI, machine learning, and cloud computing applications.What You Will LearnEmploy a pattern-oriented approach to Python debugging that starts with diagnostics of common software problemsUse tips and tricks to get the most out of popular IDEs, notebooks, and command-line Python debuggingUnderstand Python internals for interfacing with operating systems and external modulesPerform Python memory dump analysis, tracing, and loggingWho This Book Is ForSoftware developers, AI/ML engineers, researchers, data engineers, as well as MLOps and DevOps professionals.
Erscheint lt. Verlag 15.12.2023
Zusatzinfo XXI, 233 p. 57 illus.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Netzwerke
Informatik Programmiersprachen / -werkzeuge Python
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Python • Python crash dump analysis. • python debugging • Python diagnostics • Python internals • Python performance analysis • Python troubleshooting
ISBN-10 1-4842-9745-8 / 1484297458
ISBN-13 978-1-4842-9745-2 / 9781484297452
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
ein kompakter Einstieg für die Praxis

von Ralph Steyer

eBook Download (2024)
Springer Vieweg (Verlag)
34,99
Arbeiten mit NumPy, Matplotlib und Pandas

von Bernd Klein

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
29,99