Explainable Machine Learning in Medicine (eBook)

eBook Download: PDF
2023 | 1st ed. 2024
XI, 82 Seiten
Springer International Publishing (Verlag)
978-3-031-44877-5 (ISBN)

Lese- und Medienproben

Explainable Machine Learning in Medicine - Karol Przystalski, Rohit M. Thanki
Systemvoraussetzungen
85,59 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book covers a variety of advanced communications technologies that can be used to analyze medical data and can be used to diagnose diseases in clinic centers. The book is a primer of methods for medicine, providing an overview of explainable artificial intelligence (AI) techniques that can be applied in different medical challenges. The authors discuss how to select and apply the proper technology depending on the provided data and the analysis desired. Because a variety of data can be used in the medical field, the book explains how to deal with challenges connected with each type. A number of scenarios are introduced that can happen in real-time environments, with each pared with a type of machine learning that can be used to solve it.



Dr. Karol Przystalski obtained a PhD degree in Computer Science in 2017 at the Jagiellonian University in Cracow, Poland. He use to be the CTO and founder of Codete, an Exadel company. He is working with Fortune 500 companies on data science projects. He has built a research lab for machine learning methods and big data solutions at Codete. He gives speeches and trainings in data science with a focus on applied machine learning in German, Polish, and English. He is a lecturer at the Jagiellonian University in Cracow since 2010. He has been invited as a reviewer in Expert Systems with Applications journal. His areas of research interest are medical imaging analysis, artificial intelligence, machine learning, deep learning, machine learning security, pattern recognition, and image processing.
 
Dr. Rohit Thanki is a senior member of IEEE and researcher with more than 10 years of research experience in computer vision, artificial intelligence, medical image analysis & security, and biometrics, including more than 4 years of academic experience in various engineering institutions in India. He was worked as a head of research & development, Prognica Labs Tech FZCO, Dubai, UAE. Also, He was associated with Ennoventure Technologies Private Limited, Bengaluru, India. He earned my bachelor's in electronics & communication, a master's in communication engineering, and a doctorate in electronics & communication specializing in digital image processing and biometric security. His areas of research interest are medical image analysis, artificial intelligence, machine learning, deep learning, digital watermarking, biometric security, compressive sensing, and signal processing. He has over 40 publications to his credit and has published in reputed journals with high impact factors and international conferences indexing in Web of Science and Scopus. Also, He is an authored and contributed more than 15 books with respected publishers, i.e., Springer, CRC Press, Elsevier, De Gruyter, and IGI Global. In addition, He has been invited as a reviewer in various reputed journals such as IEEE Transactions on Audio, Speech and Natural Language Processing, ACM Transactions on Multimedia Computing, Communications and Applications, IEEE Consumer Electronics Magazine, IEEE Access, IEEE Journal of Biomedical and Health Informatics, Signal Processing: Image Communication, Pattern Recognition, Computers, and Electrical Engineering, Informatics in Medicine, Journal of Ambient Intelligence and Humanized Computing, IET Biometrics, and IET Image Processing.

Erscheint lt. Verlag 26.11.2023
Reihe/Serie Synthesis Lectures on Engineering, Science, and Technology
Synthesis Lectures on Engineering, Science, and Technology
Zusatzinfo XI, 82 p. 14 illus., 12 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Elektrotechnik / Energietechnik
Schlagworte Explainable machine learning • Medical Data Types • Medical Machine Learning • Medicine Artificial Intelligence • Real-world Automation Medical Cases
ISBN-10 3-031-44877-4 / 3031448774
ISBN-13 978-3-031-44877-5 / 9783031448775
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
24,90