Building ETL Pipelines with Python (eBook)
246 Seiten
Packt Publishing (Verlag)
978-1-80461-553-9 (ISBN)
Modern extract, transform, and load (ETL) pipelines for data engineering have favored the Python language for its broad range of uses and a large assortment of tools, applications, and open source components. With its simplicity and extensive library support, Python has emerged as the undisputed choice for data processing.
In this book, you'll walk through the end-to-end process of ETL data pipeline development, starting with an introduction to the fundamentals of data pipelines and establishing a Python development environment to create pipelines. Once you've explored the ETL pipeline design principles and ET development process, you'll be equipped to design custom ETL pipelines. Next, you'll get to grips with the steps in the ETL process, which involves extracting valuable data; performing transformations, through cleaning, manipulation, and ensuring data integrity; and ultimately loading the processed data into storage systems. You'll also review several ETL modules in Python, comparing their pros and cons when building data pipelines and leveraging cloud tools, such as AWS, to create scalable data pipelines. Lastly, you'll learn about the concept of test-driven development for ETL pipelines to ensure safe deployments.
By the end of this book, you'll have worked on several hands-on examples to create high-performance ETL pipelines to develop robust, scalable, and resilient environments using Python.
Develop production-ready ETL pipelines by leveraging Python libraries and deploying them for suitable use casesKey FeaturesUnderstand how to set up a Python virtual environment with PyCharmLearn functional and object-oriented approaches to create ETL pipelinesCreate robust CI/CD processes for ETL pipelinesPurchase of the print or Kindle book includes a free PDF eBookBook DescriptionModern extract, transform, and load (ETL) pipelines for data engineering have favored the Python language for its broad range of uses and a large assortment of tools, applications, and open source components. With its simplicity and extensive library support, Python has emerged as the undisputed choice for data processing. In this book, you ll walk through the end-to-end process of ETL data pipeline development, starting with an introduction to the fundamentals of data pipelines and establishing a Python development environment to create pipelines. Once you've explored the ETL pipeline design principles and ET development process, you'll be equipped to design custom ETL pipelines. Next, you'll get to grips with the steps in the ETL process, which involves extracting valuable data; performing transformations, through cleaning, manipulation, and ensuring data integrity; and ultimately loading the processed data into storage systems. You ll also review several ETL modules in Python, comparing their pros and cons when building data pipelines and leveraging cloud tools, such as AWS, to create scalable data pipelines. Lastly, you ll learn about the concept of test-driven development for ETL pipelines to ensure safe deployments. By the end of this book, you ll have worked on several hands-on examples to create high-performance ETL pipelines to develop robust, scalable, and resilient environments using Python.What you will learnExplore the available libraries and tools to create ETL pipelines using PythonWrite clean and resilient ETL code in Python that can be extended and easily scaledUnderstand the best practices and design principles for creating ETL pipelinesOrchestrate the ETL process and scale the ETL pipeline effectivelyDiscover tools and services available in AWS for ETL pipelinesUnderstand different testing strategies and implement them with the ETL processWho this book is forIf you are a data engineer or software professional looking to create enterprise-level ETL pipelines using Python, this book is for you. Fundamental knowledge of Python is a prerequisite.]]>
Erscheint lt. Verlag | 29.9.2023 |
---|---|
Sprache | englisch |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Mathematik / Informatik ► Informatik ► Theorie / Studium | |
ISBN-10 | 1-80461-553-6 / 1804615536 |
ISBN-13 | 978-1-80461-553-9 / 9781804615539 |
Haben Sie eine Frage zum Produkt? |
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich