Machine Learning with LightGBM and Python (eBook)
252 Seiten
Packt Publishing (Verlag)
978-1-80056-305-6 (ISBN)
Machine Learning with LightGBM and Python is a comprehensive guide to learning the basics of machine learning and progressing to building scalable machine learning systems that are ready for release.
This book will get you acquainted with the high-performance gradient-boosting LightGBM framework and show you how it can be used to solve various machine-learning problems to produce highly accurate, robust, and predictive solutions. Starting with simple machine learning models in scikit-learn, you'll explore the intricacies of gradient boosting machines and LightGBM. You'll be guided through various case studies to better understand the data science processes and learn how to practically apply your skills to real-world problems. As you progress, you'll elevate your software engineering skills by learning how to build and integrate scalable machine-learning pipelines to process data, train models, and deploy them to serve secure APIs using Python tools such as FastAPI.
By the end of this book, you'll be well equipped to use various -of-the-art tools that will help you build production-ready systems, including FLAML for AutoML, PostgresML for operating ML pipelines using Postgres, high-performance distributed training and serving via Dask, and creating and running models in the Cloud with AWS Sagemaker.
Take your software to the next level and solve real-world data science problems by building production-ready machine learning solutions using LightGBM and PythonKey FeaturesGet started with LightGBM, a powerful gradient-boosting library for building ML solutionsApply data science processes to real-world problems through case studiesElevate your software by building machine learning solutions on scalable platformsPurchase of the print or Kindle book includes a free PDF eBookBook DescriptionMachine Learning with LightGBM and Python is a comprehensive guide to learning the basics of machine learning and progressing to building scalable machine learning systems that are ready for release. This book will get you acquainted with the high-performance gradient-boosting LightGBM framework and show you how it can be used to solve various machine-learning problems to produce highly accurate, robust, and predictive solutions. Starting with simple machine learning models in scikit-learn, you ll explore the intricacies of gradient boosting machines and LightGBM. You ll be guided through various case studies to better understand the data science processes and learn how to practically apply your skills to real-world problems. As you progress, you ll elevate your software engineering skills by learning how to build and integrate scalable machine-learning pipelines to process data, train models, and deploy them to serve secure APIs using Python tools such as FastAPI. By the end of this book, you ll be well equipped to use various -of-the-art tools that will help you build production-ready systems, including FLAML for AutoML, PostgresML for operating ML pipelines using Postgres, high-performance distributed training and serving via Dask, and creating and running models in the Cloud with AWS Sagemaker.What you will learnGet an overview of ML and working with data and models in Python using scikit-learnExplore decision trees, ensemble learning, gradient boosting, DART, and GOSSMaster LightGBM and apply it to classification and regression problemsTune and train your models using AutoML with FLAML and OptunaBuild ML pipelines in Python to train and deploy models with secure and performant APIsScale your solutions to production readiness with AWS Sagemaker, PostgresML, and DaskWho this book is forThis book is for software engineers aspiring to be better machine learning engineers and data scientists unfamiliar with LightGBM, looking to gain in-depth knowledge of its libraries. Basic to intermediate Python programming knowledge is required to get started with the book. The book is also an excellent source for ML veterans, with a strong focus on ML engineering with up-to-date and thorough coverage of platforms such as AWS Sagemaker, PostgresML, and Dask.]]>
Erscheint lt. Verlag | 29.9.2023 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
Mathematik / Informatik ► Informatik ► Software Entwicklung | |
Mathematik / Informatik ► Informatik ► Theorie / Studium | |
ISBN-10 | 1-80056-305-1 / 1800563051 |
ISBN-13 | 978-1-80056-305-6 / 9781800563056 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich