Maschinelles Lernen für die Ingenieurwissenschaften - Marcus J Neuer

Maschinelles Lernen für die Ingenieurwissenschaften

Einführung in physikalisch informierte, erklärbare Lernverfahren für KI in technischen Anwendungen

(Autor)

Buch | Softcover
XVII, 260 Seiten
2024
Springer Berlin (Verlag)
978-3-662-68215-9 (ISBN)
37,99 inkl. MwSt

Maschinelles Lernen und künstliche Intelligenz sind omnipräsente Begriffe zur Verbesserung von technischen Prozessen. Die praktische Umsetzung an realen Problemen gestaltet sich aber oft schwierig und komplex.

Dieses Lehrbuch erklärt Lernverfahren anhand von analytischen Konzepten im Zusammenspiel mit vollständigen Programmierbeispielen in Python und bezieht sich auf dabei stets auf reale technische Anwendungsszenarien. Es zeigt den Einsatz physikalisch-informierter Lernstrategien, die Einbeziehung von Unsicherheit in die Modellierung und den Aufbau von erklärbarer, vertrauenswürdiger künstlicher Intelligenz mit Hilfe spezialisierter Datenbanken.

Dieses Lehrbuch richtet sich somit sowohl an Studierende der Ingenieurswissenschaften, Naturwissenschaft, Medizin und Betriebswirtschaft als auch an Anwender aus der Industrie (vor allem Data Scientists), Entwickler*innen von Expertendatenbanken und Softwareentwickler*innen.

lt;p>Dr. Marcus J. Neuer hat in diversen Forschungs- und Industrieprojekten Maschinelles Lernen und erklärbare künstliche Intelligenz für nutzbare, gewinnbringende Anwendungen entwickelt. Er leitet die Forschungs- und Entwicklungsabteilung der innoRIID GmbH und lehrt an der RWTH Aachen sowie der Fachhochschule der Wirtschaft, FHDW. Seine Algorithmen werden heute in verschiedenen Produkten, u.a. in den Bereichen der nuklearen Sicherheit und der Prozessindustrie, erfolgreich eingesetzt.


1Einführung in die Arbeit mit Daten.- 2. Daten als Stochastischer Prozess.- 3.Explorative Analyse (Säubern von Daten, Histogramme, Hauptkomponentenanalyse, Mathematische Transformationen).- 4.Grundlagen überwachter und unüberwachter Lernverfahren.- 5.Physikalisch-Informierte Lernverfahren (Optimierungsmethoden der Datenvorverarbeitung, Integration von transformativ-angereicherten Daten, Integration von mathematischen Modellen).- 6.Stochastische Lernverfahren (Mixture-Density Netze, Kredale Netze).- 7.Semantische Datenbanken.- 8.Erklärbare, vertrauenswürdige künstliche Intelligenz.


Erscheinungsdatum
Zusatzinfo XVII, 260 S. 78 Abb., 49 Abb. in Farbe.
Verlagsort Berlin
Sprache deutsch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
Schlagworte Data Science • Explainable AI • Künstliche Intelligenz • Lernverfahren • Maschinelles Lernen • Python • reinforced learning • Stochastik • supervised learning • Unsupervised Learning
ISBN-10 3-662-68215-X / 366268215X
ISBN-13 978-3-662-68215-9 / 9783662682159
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
28,00