A Handbook of Mathematical Models with Python - Dr. Ranja Sarkar

A Handbook of Mathematical Models with Python (eBook)

Elevate your machine learning projects with NetworkX, PuLP, and linalg
eBook Download: EPUB
2023
144 Seiten
Packt Publishing (Verlag)
978-1-80461-706-9 (ISBN)
Systemvoraussetzungen
35,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Mathematical modeling is the art of transforming a business problem into a well-defined mathematical formulation. Its emphasis on interpretability is particularly crucial when deploying a model to support high-stake decisions in sensitive sectors like pharmaceuticals and healthcare.
Through this book, you'll gain a firm grasp of the foundational mathematics underpinning various machine learning algorithms. Equipped with this knowledge, you can modify algorithms to suit your business problem. Starting with the basic theory and concepts of mathematical modeling, you'll explore an array of mathematical tools that will empower you to extract insights and understand the data better, which in turn will aid in making optimal, data-driven decisions. The book allows you to explore mathematical optimization and its wide range of applications, and concludes by highlighting the synergetic value derived from blending mathematical models with machine learning.
Ultimately, you'll be able to apply everything you've learned to choose the most fitting methodologies for the business problems you encounter.


Master the art of mathematical modeling through practical examples, use cases, and machine learning techniquesKey FeaturesGain a profound understanding of various mathematical models that can be integrated with machine learningLearn how to implement optimization algorithms to tune machine learning modelsBuild optimal solutions for practical use casesPurchase of the print or Kindle book includes a free PDF eBookBook DescriptionMathematical modeling is the art of transforming a business problem into a well-defined mathematical formulation. Its emphasis on interpretability is particularly crucial when deploying a model to support high-stake decisions in sensitive sectors like pharmaceuticals and healthcare. Through this book, you ll gain a firm grasp of the foundational mathematics underpinning various machine learning algorithms. Equipped with this knowledge, you can modify algorithms to suit your business problem. Starting with the basic theory and concepts of mathematical modeling, you ll explore an array of mathematical tools that will empower you to extract insights and understand the data better, which in turn will aid in making optimal, data-driven decisions. The book allows you to explore mathematical optimization and its wide range of applications, and concludes by highlighting the synergetic value derived from blending mathematical models with machine learning. Ultimately, you ll be able to apply everything you ve learned to choose the most fitting methodologies for the business problems you encounter.What you will learnUnderstand core concepts of mathematical models and their relevance in solving problemsExplore various approaches to modeling and learning using PythonWork with tested mathematical tools to gather meaningful insightsBlend mathematical modeling with machine learning to find optimal solutions to business problemsOptimize ML models built with business data, apply them to understand their impact on the business, and address critical questionsApply mathematical optimization for data-scarce problems where the objective and constraints are knownWho this book is forIf you are a budding data scientist seeking to augment your journey with mathematics, this book is for you. Researchers and R&D scientists will also be able to harness the concepts covered to their full potential. To make the best use of this book, a background in linear algebra, differential equations, basics of statistics, data types, data structures, and numerical algorithms will be useful.]]>
Erscheint lt. Verlag 30.8.2023
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
ISBN-10 1-80461-706-7 / 1804617067
ISBN-13 978-1-80461-706-9 / 9781804617069
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Discover tactics to decrease churn and expand revenue

von Jeff Mar; Peter Armaly

eBook Download (2024)
Packt Publishing (Verlag)
25,19