Dynamic Calculus and Equations on Time Scales (eBook)
336 Seiten
De Gruyter (Verlag)
978-3-11-118519-4 (ISBN)
The latest advancements in time scale calculus are the focus of this book. New types of time-scale integral transforms are discussed in the book, along with how they can be used to solve dynamic equations. Novel numerical techniques for partial dynamic equations on time scales are described. New time scale inequalities for exponentially convex functions are introduced as well.
Svetlin G. Georgiev
(born 1974, Bulgaria) has worked in various areas of mathematics. His current focus: harmonic analysis, functional analysis, partial di erential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations, dynamic calculus on time scales.
1 Projector analysis of dynamic systems on time scales
Abstract
This chapter presents a projector analysis of dynamic systems on time scales. We investigate the linear time-varying dynamic systems and classify them into those of the first, second, third, and fourth kind. The considered systems are investigated in the case when they are regular with tractability index 1. Then, we define jets of a function of one independent time scale variable and jets of a function of n independent real variables and one independent time scale variable. We introduce jet spaces and give some of their properties. In the chapter, we also define differentiable functions and total derivatives. We consider nonlinear dynamic systems on arbitrary time scales. We define properly involved derivatives, constraints, and consistent initial values for the considered equations. We introduce a linearization for nonlinear dynamic systems and investigate the total derivative for regular linearized equations with tractability index 1.
1.1 Linear time-varying dynamic-algebraic equations
This chapter is devoted to linear time-varying dynamic-algebraic equations. We classify them into those of the first, second, third and fourth kind. We investigate them in the case when they are regular with tractability index 1.
Suppose T is a time scale with forward jump operator and delta differentiation operator σ and Δ, respectively. Let I⊆T.
1.1.1 Linear time-varying dynamic-algebraic equations of the first kind
In this section, we will investigate the following linear time-varying dynamic-algebraic equation:
where A:I→Mn×m, B:I→Mm×n, C:I→Mn×n, and f:I→Rn are given. Here, with Mp×q we denote the set of all p×q real matrices.
Definition 1.1.
Equation (1.1) is said to be a linear time-varying dynamic-algebraic equation of the first kind.
We will consider the solutions of (1.1) within the space CB1(I). Below, we remove the explicit dependence on t for the sake of notational simplicity.
1.1.1.1 A particular case
Suppose that A,C:I→Mn×n. Consider the equation
We will show that equation (1.2) can be reduced to equation (1.1). Suppose that P is a C1-projector along kerAσ. Then
and
Hence, equation (1.2) takes the form
or
Set
Thus, (1.2) takes the form
i. e., equation (1.2) is a particular case of equation (1.1).
Example.
Let
We have
and
We will find a vector
so that
We have
whereupon
and the null projector to Aσ(t), t∈T, is
Hence,
is a projector along kerAσ. Note that
Equation (1.2) can be written as follows:
or
This system, using (1.3), can be rewritten in the form
or
or
or
or
1.1.1.2 Standard form index 1 problems
In this section, we will investigate the equation
where kerA is a C1-space, C∈C(I), P is a C1-projector along kerA. Then
Assume in addition that
and
- (B1)
-
the matrix
A1=A+CQis invertible.
Definition 1.2.
Equation (1.5) is said to be regular with tractability index 1.
We will start our investigations with the following useful lemma.
Lemma 1.1.
Suppose that (B1) holds. Then
and
Proof.
We have
Since Q=I−P and kerP=kerA, we have imQ=kerA and
Then
Erscheint lt. Verlag | 18.9.2023 |
---|---|
Zusatzinfo | 2 b/w ill., 7 b/w tbl. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik |
Schlagworte | Dynamic Equations • dynamic inequalities • Dynamische Gleichungen • Dynamische Ungleichheiten • Dynamische Ungleichungen • Fourier transform • Fourier-Transformation • Integral equations • Integralgleichungen • mumerical methods. • numerische Methoden |
ISBN-10 | 3-11-118519-2 / 3111185192 |
ISBN-13 | 978-3-11-118519-4 / 9783111185194 |
Haben Sie eine Frage zum Produkt? |
Größe: 50,9 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich