M-statistics (eBook)

Optimal Statistical Inference for a Small Sample
eBook Download: EPUB
2023 | 1. Auflage
240 Seiten
John Wiley & Sons (Verlag)
978-1-119-89181-9 (ISBN)

Lese- und Medienproben

M-statistics - Eugene Demidenko
Systemvoraussetzungen
100,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
M-STATISTICS

A comprehensive resource providing new statistical methodologies and demonstrating how new approaches work for applications

M-statistics introduces a new approach to statistical inference, redesigning the fundamentals of statistics, and improving on the classical methods we already use. This book targets exact optimal statistical inference for a small sample under one methodological umbrella. Two competing approaches are offered: maximum concentration (MC) and mode (MO) statistics combined under one methodological umbrella, which is why the symbolic equation M=MC+MO. M-statistics defines an estimator as the limit point of the MC or MO exact optimal confidence interval when the confidence level approaches zero, the MC and MO estimator, respectively. Neither mean nor variance plays a role in M-statistics theory.

Novel statistical methodologies in the form of double-sided unbiased and short confidence intervals and tests apply to major statistical parameters:

* Exact statistical inference for small sample sizes is illustrated with effect size and coefficient of variation, the rate parameter of the Pareto distribution, two-sample statistical inference for normal variance, and the rate of exponential distributions.

* M-statistics is illustrated with discrete, binomial, and Poisson distributions. Novel estimators eliminate paradoxes with the classic unbiased estimators when the outcome is zero.

* Exact optimal statistical inference applies to correlation analysis including Pearson correlation, squared correlation coefficient, and coefficient of determination. New MC and MO estimators along with optimal statistical tests, accompanied by respective power functions, are developed.

* M-statistics is extended to the multidimensional parameter and illustrated with the simultaneous statistical inference for the mean and standard deviation, shape parameters of the beta distribution, the two-sample binomial distribution, and finally, nonlinear regression.

Our new developments are accompanied by respective algorithms and R codes, available at GitHub, and as such readily available for applications.

M-statistics is suitable for professionals and students alike. It is highly useful for theoretical statisticians and teachers, researchers, and data science analysts as an alternative to classical and approximate statistical inference.

Eugene Demidenko is Professor of Biomedical Data Science at the Geisel School of Medicine and Mathematics at Dartmouth. He is a member of the American Statistical Association (ASA) and the Society of Industrial and Applied Mathematics (SIAM). In statistics, Professor Demidenko's research includes statistical methodology, mixed models, and nonlinear regression. In applied mathematics, he contributed to existence and uniqueness of global minimum, tumor regrowth theory, shape and image analysis, and solving ill-posed problems via mixed boundary partial differential equations. He is the author of two books published by Wiley in 2013 and 2020 "Mixed Models: Theory and Applications" and "Advanced Statistics with Applications in R." The latter book received a prestigious Ziegel Book Award in Statistics from Technometrics/ASA journal in 2022.

Erscheint lt. Verlag 1.8.2023
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Probability & Mathematical Statistics • Statistical Software / R • Statistics • Statistik • Statistiksoftware / R • Wahrscheinlichkeitsrechnung u. mathematische Statistik
ISBN-10 1-119-89181-7 / 1119891817
ISBN-13 978-1-119-89181-9 / 9781119891819
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 16,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich