The Regularization Cookbook (eBook)
424 Seiten
Packt Publishing (Verlag)
978-1-83763-972-4 (ISBN)
Regularization is an infallible way to produce accurate results with unseen data, however, applying regularization is challenging as it is available in multiple forms and applying the appropriate technique to every model is a must. The Regularization Cookbook provides you with the appropriate tools and methods to handle any case, with ready-to-use working codes as well as theoretical explanations.
After an introduction to regularization and methods to diagnose when to use it, you'll start implementing regularization techniques on linear models, such as linear and logistic regression, and tree-based models, such as random forest and gradient boosting. You'll then be introduced to specific regularization methods based on data, high cardinality features, and imbalanced datasets. In the last five chapters, you'll discover regularization for deep learning models. After reviewing general methods that apply to any type of neural network, you'll dive into more NLP-specific methods for RNNs and transformers, as well as using BERT or GPT-3. By the end, you'll explore regularization for computer vision, covering CNN specifics, along with the use of generative models such as stable diffusion and Dall-E.
By the end of this book, you'll be armed with different regularization techniques to apply to your ML and DL models.
Methodologies and recipes to regularize any machine learning and deep learning model using cutting-edge technologies such as stable diffusion, Dall-E and GPT-3Purchase of the print or Kindle book includes a free PDF eBookKey FeaturesLearn to diagnose the need for regularization in any machine learning modelRegularize different ML models using a variety of techniques and methodsEnhance the functionality of your models using state of the art computer vision and NLP techniquesBook DescriptionRegularization is an infallible way to produce accurate results with unseen data, however, applying regularization is challenging as it is available in multiple forms and applying the appropriate technique to every model is a must. The Regularization Cookbook provides you with the appropriate tools and methods to handle any case, with ready-to-use working codes as well as theoretical explanations. After an introduction to regularization and methods to diagnose when to use it, you'll start implementing regularization techniques on linear models, such as linear and logistic regression, and tree-based models, such as random forest and gradient boosting. You'll then be introduced to specific regularization methods based on data, high cardinality features, and imbalanced datasets. In the last five chapters, you'll discover regularization for deep learning models. After reviewing general methods that apply to any type of neural network, you'll dive into more NLP-specific methods for RNNs and transformers, as well as using BERT or GPT-3. By the end, you'll explore regularization for computer vision, covering CNN specifics, along with the use of generative models such as stable diffusion and Dall-E. By the end of this book, you'll be armed with different regularization techniques to apply to your ML and DL models.What you will learnDiagnose overfitting and the need for regularizationRegularize common linear models such as logistic regressionUnderstand regularizing tree-based models such as XGBoosUncover the secrets of structured data to regularize ML modelsExplore general techniques to regularize deep learning modelsDiscover specific regularization techniques for NLP problems using transformersUnderstand the regularization in computer vision models and CNN architecturesApply cutting-edge computer vision regularization with generative modelsWho this book is forThis book is for data scientists, machine learning engineers, and machine learning enthusiasts, looking to get hands-on knowledge to improve the performances of their models. Basic knowledge of Python is a prerequisite.]]>
Erscheint lt. Verlag | 31.7.2023 |
---|---|
Vorwort | Akin Osman Kazakci |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
ISBN-10 | 1-83763-972-8 / 1837639728 |
ISBN-13 | 978-1-83763-972-4 / 9781837639724 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich