Matrix and Operator Equations and Applications (eBook)
X, 765 Seiten
Springer Nature Switzerland (Verlag)
978-3-031-25386-7 (ISBN)
This book concerns matrix and operator equations that are widely applied in various disciplines of science to formulate challenging problems and solve them in a faithful way. The main aim of this contributed book is to study several important matrix and operator equalities and equations in a systematic and self-contained fashion. Some powerful methods have been used to investigate some significant equations in functional analysis, operator theory, matrix analysis, and numerous subjects in the last decades.
The book is divided into two parts: (I) Matrix Equations and (II) Operator Equations.
In the first part, the state-of-the-art of systems of matrix equations is given and generalized inverses are used to find their solutions. The semi-tensor product of matrices is used to solve quaternion matrix equations. The contents of some chapters are related to the relationship between matrix inequalities, matrix means, numerical range, and matrix equations. In addition, quaternion algebras and their applications are employed in solving some famous matrix equations like Sylvester, Stein, and Lyapunov equations. A chapter devoted to studying Hermitian polynomial matrix equations, which frequently arise from linear-quadratic control problems. Moreover, some classical and recently discovered inequalities for matrix exponentials are reviewed.
In the second part, the latest developments in solving several equations appearing in modern operator theory are demonstrated. These are of interest to a wide audience of pure and applied mathematicians. For example, the Daugavet equation in the linear and nonlinear setting, iterative processes and Volterra-Fredholm integral equations, semicircular elements induced by connected finite graphs, free probability, singular integral operators with shifts, and operator differential equations closely related to the properties of the coefficient operators in some equations are discussed.
The chapters give a comprehensive account of their subjects. The exhibited chapters are written in a reader-friendly style and can be read independently. Each chapter contains a rich bibliography. This book is intended for use by both researchers and graduate students of mathematics, physics, and engineering.
M. S. Moslehian is a Professor of Mathematics at the Ferdowsi University of Mashhad, a member of the academy of sciences of Iran, and the President of Iran. Math. Soc. His research concerns operator theory and matrix analysis. He was a Senior Associate in ICTP (Italy) and a visiting professor at several universities around the world. He is the editor-in-chief of the journals 'Banach J. Math. Anal.', 'Ann. Funct. Anal.', and 'Adv. Oper. Theory' being published by Birkhäuser/Springer.
Erscheint lt. Verlag | 29.7.2023 |
---|---|
Reihe/Serie | Mathematics Online First Collections | Mathematics Online First Collections |
Zusatzinfo | X, 765 p. 10 illus. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik |
Schlagworte | Berezin number • Daugaet equation • differential equation • generalized inverse • Graph groupoids • Log-majorization • Matrix equation • Matrix polynomial equation • Matrix quadratic equation • Numerical range • Operator Equation • Operator Mean • Quaternion matrix equation • reproducing kernel Hilbert space • Singular integral operator with shifts • Split quaternion • Sylvester equation • variational problem • Volterra-Fredholm integral equation • Yang-Baxter-like matrix equation |
ISBN-10 | 3-031-25386-8 / 3031253868 |
ISBN-13 | 978-3-031-25386-7 / 9783031253867 |
Haben Sie eine Frage zum Produkt? |
Größe: 13,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich