Analytic Number Theory And Algebraic Asymptotic Analysis
Seiten
2025
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-12-8053-5 (ISBN)
World Scientific Publishing Co Pte Ltd (Verlag)
978-981-12-8053-5 (ISBN)
- Titel z.Zt. nicht lieferbar (ca. April 2025)
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
This monograph elucidates and extends many theorems and conjectures in analytic number theory and algebraic asymptotic analysis via the natural notions of degree and logexponential degree. The Riemann hypothesis, for example, is equivalent to the statement that the degree of the function π(x) - li(x) is ½, where π(x) is the prime counting function and li(x) is the logarithmic integral function. Part 1 of the text is a survey of analytic number theory, Part 2 introduces the notion of logexponential degree and uses it to extend results in algebraic asymptotic analysis, and Part 3 applies the results of Part 2 to the various functions that figure most prominently in analytic number theory.Central to the notion of logexponential degree are G H Hardy's logarithmico-exponential functions, which are real functions defined in a neighborhood of ∞ that can be built from id, exp, and log using the operations +, ·, /, and °. Such functions are natural benchmarks for the orders of growth of functions in analytic number theory. The main goal of Part 3 is to express the logexponential degree of various functions in analytic number theory in terms of as few 'logexponential primitives' as possible. The logexponential degree of the function eγπp≤x(1-⅟p) - ⅟log x, for example, can be expressed in terms of that of π(x) - li(x) and vice versa (where γ ≈ 0.5772 is the Euler-Mascheroni constant), despite the fact that very little is known about the logexponential degree of either function separately, even on condition of the Riemann hypothesis.
Erscheint lt. Verlag | 30.4.2025 |
---|---|
Reihe/Serie | Monographs In Number Theory |
Verlagsort | Singapore |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
ISBN-10 | 981-12-8053-3 / 9811280533 |
ISBN-13 | 978-981-12-8053-5 / 9789811280535 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
59,95 €