Algebraic, Number Theoretic, and Topological Aspects of Ring Theory (eBook)
X, 474 Seiten
Springer-Verlag
978-3-031-28847-0 (ISBN)
This volume has been curated from two sources: presentations from the Conference on Rings and Polynomials, Technische Universität Graz, Graz, Austria, July 19 -24, 2021, and papers intended for presentation at the Fourth International Meeting on Integer-valued Polynomials and Related Topics, CIRM, Luminy, France, which was cancelled due to the pandemic. The collection ranges widely over the algebraic, number theoretic and topological aspects of rings, algebras and polynomials. Two areas of particular note are topological methods in ring theory, and integer valued polynomials. The book is dedicated to the memory of Paul-Jean Cahen, a coauthor or research collaborator with some of the conference participants and a friend to many of the others. This collection contains a memorial article about Paul-Jean Cahen, written by his longtime research collaborator and coauthor Jean-Luc Chabert.
Jean-Luc Chabert is emeritus professor of mathematics at the Université de Picardie-Jules Verne. His research interests include algebraic number theory, commutative algebra, and rings of polynomials.
Marco Fontana is emeritus professor of algebra at the Università degli Studi 'Roma Tre'. His research interests lie in the areas of commutative ring theory and related topological aspects, with main focus on multiplicative ideal theory, Prüfer-like conditions and ideal factorizations, and Zariski-Riemann spaces of valuation domains.
Sophie Frisch is associate professor of mathematics at Technische Universität Graz, Graz, Austria. Her research interests are in commutative algebra and ring theory, including, but not limited to, polynomial mappings and integer-valued polynomials.
Sarah Glaz is emeritus professor of mathematics at the University of Connecticut. Her research interests lie in the areas of commutative ring theory and homological algebra, with main focus on non-Noetherian properties such as coherence, finite conductor, Gaussian, and Prüfer-like conditions of rings and their modules.
Keith Johnson is emeritus professor of mathematics at Dalhousie University. His research interests include number theory, algebraic topology and algebra, particularly the occurrence and uses of rings of integer valued polynomials in algebraic topology.
Erscheint lt. Verlag | 7.7.2023 |
---|---|
Zusatzinfo | X, 474 p. 32 illus. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik |
Schlagworte | Bhargava generalized factorials • capacity theory • Commutative Rings • conference rings polynomials • integer-valued polynomials • linear algebra over rings • module theory • multiplicative ideal theory • non-commutative rings • polya fields • Polynomial Functions • rings and polynomials • Ring Theory • topological methods ring theory • Zariski-Riemann spaces |
ISBN-10 | 3-031-28847-5 / 3031288475 |
ISBN-13 | 978-3-031-28847-0 / 9783031288470 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 13,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich