AI-ML for Decision and Risk Analysis (eBook)

Challenges and Opportunities for Normative Decision Theory
eBook Download: PDF
2023 | 1. Auflage
XXIII, 433 Seiten
Springer-Verlag
978-3-031-32013-2 (ISBN)

Lese- und Medienproben

AI-ML for Decision and Risk Analysis -  Louis Anthony Cox Jr.
Systemvoraussetzungen
192,59 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book explains and illustrates recent developments and advances in decision-making and risk analysis. It demonstrates how artificial intelligence (AI) and machine learning (ML) have not only benefitted from classical decision analysis concepts such as expected utility maximization but have also contributed to making normative decision theory more useful by forcing it to confront realistic complexities. These include skill acquisition, uncertain and time-consuming implementation of intended actions, open-world uncertainties about what might happen next and what consequences actions can have, and learning to cope effectively with uncertain and changing environments. The result is a more robust and implementable technology for AI/ML-assisted decision-making.

The book is intended to inform a wide audience in related applied areas and to provide a fun and stimulating resource for students, researchers, and academics in data science and AI-ML, decision analysis, and other closely linked academic fields. It will also appeal to managers, analysts, decision-makers, and policymakers in financial, health and safety, environmental, business, engineering, and security risk management.



Louis Anthony Cox Jr. is a Professor of Business Analytics at the University of Colorado, USA; Chief Digital Intelligence Officer at Entanglement, Inc.; and President of Cox Associates, a Denver-based applied research company specializing in artificial intelligence and machine learning; health, safety, and environmental risk analysis; epidemiology; policy analytics; data science; and operations research. Dr. Cox is Editor-in-Chief of Risk Analysis: An International Journal. He is a member of the National Academy of Engineering, a Fellow of the Institute for Operations Research and Management Science (INFORMS), and a Fellow of the Society for Risk Analysis (SRA). He has authored and co-authored over 200 journal articles and numerous books and chapters in these fields. He holds over a dozen US patents on applications of artificial intelligence, signal processing, statistics, and operations research in telecommunications. His current research interests include computational statistical methods for causal inference in public health risk analysis, data mining, and advanced analytics for risk management, business, and public policy applications.

Erscheint lt. Verlag 5.7.2023
Reihe/Serie International Series in Operations Research & Management Science
International Series in Operations Research & Management Science
Zusatzinfo XXIII, 433 p. 1 illus.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Statistik
Wirtschaft Allgemeines / Lexika
Wirtschaft Betriebswirtschaft / Management
Schlagworte Applications • Artificial Intelligence • Causal Artificial Intelligence • Causal Models • COVID-19 Risk Management • Deep learning • machine learning • Normative Decision Theory • Public Health Care • Risk Management
ISBN-10 3-031-32013-1 / 3031320131
ISBN-13 978-3-031-32013-2 / 9783031320132
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99