Introduction to Datafication - Shivakumar R. Goniwada

Introduction to Datafication (eBook)

Implement Datafication Using AI and ML Algorithms
eBook Download: PDF
2023 | First Edition
XIX, 275 Seiten
Apress (Verlag)
978-1-4842-9496-3 (ISBN)
Systemvoraussetzungen
56,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book presents the process and framework you need to transform aspects of our world into data that can be collected, analyzed, and used to make decisions. You will understand the technologies used to gather and process data from many sources, and you will learn how to analyze data with AI and ML models.

Datafication is becoming increasingly prevalent in many areas of our lives, from business to education and healthcare. It has the potential to improve decision-making by providing insights into patterns, trends, and correlation between seemingly unconnected pieces of data. This book explains the evolution, principles, and patterns of datafication used in our day-to-day activities. It covers how to collect data from a variety of sources, using technologies such as edge, streaming techniques, REST, and frameworks, as well as data cleansing and data lineage. A data analysis framework is provided to guide you in designing and developing AI and ML projects, including the details of sentiment and behavioral analytics.

Introduction to Datafication teaches you how to engineer AI and ML projects by using various methodologies, covers the security mechanisms to be applied for datafication, and shows you how to govern the datafication process with a well-defined governance framework.

What You Will Learn
  • Understand the principles and patterns to be adopted for datafication
  • Gain techniques for sourcing and mining data, and for sharing data with a data pipeline
  • Leverage the AI and ML algorithms most suitable for datafication
  • Understand the data analysis framework used in every AI and ML project
  • Master the details of sentiment and behavioral analytics through practical examples
  • Utilize development methodologies for datafication engineering and the related security and governance framework

Who This Book Is For

Students, data scientists, data analysts, and AI and ML engineers


Shivakumar R. Goniwada is an author, inventor, chief enterprise architect, and technology leader with more than 23 years of experience in architecting cloud-native, data analytics, and event-driven systems. He works for Accenture and leads a highly experienced technology enterprise and cloud architect team. In his 23 years of experience, Shivakumar has led many complex projects across industries and the globe. He has 10 software patents in cloud computing, polyglot architecture, software engineering, and IoT. Shivakumar is a speaker at multiple global and in-house conferences. He holds multiple data science certifications: Accenture Master Technology Architecture (MTA), Google Professional, AWS. He completed his Executive MBA at the MIT Sloan School of Management. And he authored the Apress book, Cloud Native Architecture and Design.


This book presents the process and framework you need to transform aspects of our world into data that can be collected, analyzed, and used to make decisions. You will understand the technologies used to gather and process data from many sources, and you will learn how to analyze data with AI and ML models.Datafication is becoming increasingly prevalent in many areas of our lives, from business to education and healthcare. It has the potential to improve decision-making by providing insights into patterns, trends, and correlation between seemingly unconnected pieces of data. This book explains the evolution, principles, and patterns of datafication used in our day-to-day activities. It covers how to collect data from a variety of sources, using technologies such as edge, streaming techniques, REST, and frameworks, as well as data cleansing and data lineage. A data analysis framework is provided to guide you in designing and developing AI and ML projects, including the details of sentiment and behavioral analytics.Introduction to Datafication teaches you how to engineer AI and ML projects by using various methodologies, covers the security mechanisms to be applied for datafication, and shows you how to govern the datafication process with a well-defined governance framework.What You Will LearnUnderstand the principles and patterns to be adopted for dataficationGain techniques for sourcing and mining data, and for sharing data with a data pipelineLeverage the AI and ML algorithms most suitable for dataficationUnderstand the data analysis framework used in every AI and ML projectMaster the details of sentiment and behavioral analytics through practical examplesUtilize development methodologies for datafication engineering and the related security and governance framework Who This Book Is ForStudents, data scientists, data analysts, and AI and ML engineers
Erscheint lt. Verlag 27.6.2023
Zusatzinfo XIX, 275 p. 58 illus.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Cultural Analytics • Datafication • Datafication Algorithms • Datafication pipeline • data patterns • Data Sharing
ISBN-10 1-4842-9496-3 / 1484294963
ISBN-13 978-1-4842-9496-3 / 9781484294963
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99