Text Analytics for Corpus Linguistics and Digital Humanities - Gerold Schneider

Text Analytics for Corpus Linguistics and Digital Humanities

Simple R Scripts and Tools
Buch | Hardcover
236 Seiten
2024
Bloomsbury Academic (Verlag)
978-1-350-37082-1 (ISBN)
118,45 inkl. MwSt
Do you want to gain a deeper understanding of how big tech analyses and exploits our text data, or investigate how political parties differ by analysing textual styles, associations and trends in documents? Or create a map of a text collection and write a simple QA system yourself?

This book explores how to apply state-of-the-art text analytics methods to detect and visualise phenomena in text data. Solidly based on methods from corpus linguistics, natural language processing, text analytics and digital humanities, this book shows readers how to conduct experiments with their own corpora and research questions, underpin their theories, quantify the differences and pinpoint characteristics. Case studies and experiments are detailed in every chapter using real-world and open access corpora from politics, World English, history, and literature. The results are interpreted and put into perspective, pitfalls are pointed out, and necessary pre-processing steps are demonstrated. This book also demonstrates how to use the programming language R, as well as simple alternatives and additions to R, to conduct experiments and employ visualisations by example, with extensible R-code, recipes, links to corpora, and a wide range of methods. The methods introduced
can be used across texts of all disciplines, from history or literature to party manifestos and patient reports.

Gerold Schneider is Adjunct Professor at the Department of Computational Linguistics of the University of Zurich, Switzerland.

List of Figures
List of Tables
Acknowledgements
1. Introduction
2. Spikes of Frequencies and First Steps in UNIX
3. Frequency Lists and First Steps in R
4. Overuse and Keywords and Using R Libraries
5. Document Classification and Supervised ML in LightSide and R
6. Topic Modelling and Unsupervised ML with Mallet and R
7. Kernel Density Estimation for Conceptual Maps
8. Distributional Semantics
9. BERT Models
10. Conclusions
References
Index

Erscheinungsdatum
Reihe/Serie Language, Data Science and Digital Humanities
Zusatzinfo 25 bw illus
Verlagsort London
Sprache englisch
Maße 156 x 234 mm
Themenwelt Geisteswissenschaften Sprach- / Literaturwissenschaft Sprachwissenschaft
Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
ISBN-10 1-350-37082-7 / 1350370827
ISBN-13 978-1-350-37082-1 / 9781350370821
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Daten importieren, bereinigen, umformen und visualisieren

von Hadley Wickham; Mine Çetinkaya-Rundel …

Buch | Softcover (2024)
O'Reilly (Verlag)
54,90