Machine Learning with Python Cookbook - Kyle Gallatin, Chris Albon

Machine Learning with Python Cookbook

Practical Solutions from Preprocessing to Deep Learning
Buch | Softcover
380 Seiten
2023 | 2nd Revised edition
O'Reilly Media (Verlag)
978-1-0981-3572-0 (ISBN)
79,80 inkl. MwSt
This practical guide provides more than 200 self-contained recipes to help you solve machine learning challenges you may encounter in your work. If you're comfortable with Python and its libraries, including pandas and scikit-learn, you'll be able to address specific problems all the way from loading data to training models and leveraging neural networks.

Each recipe in this updated edition includes code that you can copy, paste, and run with a toy dataset to ensure it works. From there, you can adapt these recipes according to your use case or application. Recipes include a discussion that explains the solution and provides meaningful context. Go beyond theory and concepts by learning the nuts and bolts you need to construct working machine learning applications.

You'll find recipes for:

Vectors, matrices, and arrays
Working with data from CSV, JSON, SQL, databases, cloud storage, and other sources
Handling numerical and categorical data, text, images, and dates and times
Dimensionality reduction using feature extraction or feature selection
Model evaluation and selection
Linear and logical regression, trees and forests, and k-nearest neighbors
Support vector machines (SVM), naive Bayes, clustering, and tree-based models
Saving and loading trained models from multiple frameworks

Kyle Gallatin is a software engineer for machine learning infrastructure with years of experience as a data analyst, data scientist and machine learning engineer. He is also a professional data science mentor, volunteer computer science teacher and frequently publishes articles at the intersection of software engineering and machine learning. Currently, Kyle is a software engineer on the machine learning platform team at Etsy. Chris Albon is the Director of Machine Learning at the Wikimedia Foundation, the non-profit that hosts Wikipedia.

Erscheinungsdatum
Verlagsort Sebastopol
Sprache englisch
Maße 178 x 233 mm
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-0981-3572-5 / 1098135725
ISBN-13 978-1-0981-3572-0 / 9781098135720
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
28,00