Finite Difference Methods for Nonlinear Evolution Equations - Zhi-zhong Sun, Qifeng Zhang, Guang-hua Gao

Finite Difference Methods for Nonlinear Evolution Equations (eBook)

eBook Download: EPUB
2023
432 Seiten
De Gruyter (Verlag)
978-3-11-079611-7 (ISBN)
Systemvoraussetzungen
159,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The series is devoted to the publication of high-level monographs and specialized graduate texts which cover the whole spectrum of applied mathematics, including its numerical aspects. The focus of the series is on the interplay between mathematical and numerical analysis, and also on its applications to mathematical models in the physical and life sciences.

The aim of the series is to be an active forum for the dissemination of up-to-date information in the form of authoritative works that will serve the applied mathematics community as the basis for further research.

Editorial Board

Rémi Abgrall, Universität Zürich, Switzerland
José Antonio Carrillo de la Plata, University of Oxford, UK
Jean-Michel Coron, Université Pierre et Marie Curie, Paris, France
Athanassios S. Fokas, Cambridge University, UK
Irene Fonseca, Carnegie Mellon University, Pittsburgh, USA



Zhi-zhong Sun, Southeast University, China

1 Difference methods for the Fisher equation


1.1 Introduction


The Fisher equation belongs to the class of reaction-diffusion equations. In fact, it is one of the simplest semilinear reaction-diffusion equations, the one which has the inhomogeneous term f(u)=λu(1−u), which can exhibit traveling wave solutions that switch between equilibrium states given by f(u)=0. Such an equation occurs, e. g., in ecology, physiology, combustion, crystallization, plasma physics and in general, phase transition problems. Fisher proposed this equation in 1937 to describe the spatial spread of an advantageous allele and explored its traveling wave solutions [12]. In the same year (1937) as Fisher, Kolmogorov, Petrovskii and Piskunov introduced a more general reaction-diffusion equation [18]. In this chapter, we consider the following initial and boundary value problem of a one-dimensional Fisher equation:

where λ is a positive constant, functions φ(x), α(t), β(t) are all given and φ(0)=α(0), φ(L)=β(0). Suppose that the problem (1.1)–(1.3) has a smooth solution.

Before introducing the difference scheme, a priori estimate on the solution of the problem (1.1)–(1.3) is given.

Theorem 1.1. Let u(x,t) be the solution of the problem (1.1)–(1.3) with α(t)≡0, β(t)≡0. Denote
E(t)=∫0Lu2(x,t)dx+2∫0t[∫0Lux2(x,s)dx+λ∫0L(u3(x,s)−u2(x,s))dx]ds,F(t)=∫0Lux2(x,t)dx+λ∫0L[23u3(x,t)−u2(x,t)]dx+2∫0t[∫0Lus2(x,s)dx]ds.
Then
E(t)=E(0),F(t)=F(0),0<t⩽T.

Proof.


(I) Multiplying both the right- and left-hand sides of (1.1) by u(x,t) gives

u(x,t)ut(x,t)−u(x,t)uxx(x,t)+λ[u3(x,t)−u2(x,t)]=0,

i. e.,

12ddt[u2(x,t)]−(u(x,t)ux(x,t))x+ux2(x,t)+λ[u3(x,t)−u2(x,t)]=0.

Integrating both the right- and left-hand sides with respect to x on the interval [0,L] and noticing (1.3) with α(t)=β(t)=0, we have

12ddt∫0Lu2(x,t)dx+∫0Lux2(x,t)dx+λ∫0L[u3(x,t)−u2(x,t)]dx=0,

which can be rewritten as

ddt{∫0Lu2(x,t)dx+2∫0t[∫0Lux2(x,s)dx+λ∫0L(u3(x,s)−u2(x,s))dx]ds}=0.

Then E(t)=E(0) is obtained.

(II) Multiplying both the right- and left-hand sides of (1.1) by ut(x,t) yields

ut2(x,t)−ut(x,t)uxx(x,t)−λ[u(x,t)−u2(x,t)]ut(x,t)=0,

i. e.,

ut2(x,t)−(ut(x,t)ux(x,t))x+(12ux2(x,t))t+λ[13u3(x,t)−12u2(x,t)]t=0.

Integrating both the right- and left-hand sides with respect to x on the interval [0,L] and noticing (1.3) with α(t)=β(t)=0, we have

12ddt∫0Lux2(x,t)dx+λddt∫0L[13u3(x,t)−12u2(x,t)]dx+∫0Lut2(x,t)dx=0,

which can be rewritten as

ddt[∫0Lux2(x,t)dx+λ∫0L(23u3(x,t)−u2(x,t))dx+2∫0t(∫0Lus2(x,s)dx)ds]=0,

i. e.,

dF(t)dt=0,0<t⩽T.

Thus, F(t)=F(0) is followed.  □

1.2 Notation and lemmas


In order to derive the difference scheme, we first divide the domain [0,L]×[0,T]. Take two positive integers m, n. Divide [0,L] into m equal subintervals, and [0,T] into n subintervals. Denote h=L/m, τ=T/n; xi=ih, 0⩽i⩽m; tk=kτ, 0⩽k⩽n; Ωh={xi∣0⩽i⩽m}, Ωτ={tk∣0⩽k⩽n};Ωhτ=Ωh×Ωτ. We call all of the nodes {(xi,tk)∣0⩽i⩽m} on the line t=tk the k-th time-level nodes. In addition, denote xi+12=12(xi+xi+1), tk+12=12(tk+tk+1), r=τh2.

Denote

Uh={u∣u=(u0,u1,…,um)is the grid function defined onΩh},U˚h={u∣u∈Uh,u0=um=0}.

For any grid function u∈Uh, introduce the following notation:

δxui+12=1h(ui+1−ui),δx2ui=1h2(ui−1−2ui+ui+1),Δxui=12h(ui+1−ui−1).

It follows easily that

δx2ui=1h(δxui+12−δxui−12),Δxui=12(δxui−12+δxui+12).

Suppose u,v∈Uh. Introduce the inner products, norms and seminorms as

(u,v)=h(12u0v0+∑i=1m−1uivi+12umvm),⟨δxu,δxv⟩=h∑i=1m(δxui−12)(δxvi−12),‖u‖∞=max0⩽i⩽m|ui|,‖u‖=(u,u),‖δxu‖∞=max1⩽i⩽m|δxui−12|,|u|1=⟨δxu,δxu⟩,‖u‖1=‖u‖2+|u|12,|u|2=h∑i=1m−1(δx2ui)2,‖u‖2=‖u‖2+|u|12+|u|22.

If Uh is a complex space, then the corresponding inner product is defined by

(u,v)=h(12u0v¯0+∑i=1m−1uiv¯i+12umv¯m),

with v¯i the conjugate of vi.

Denote

Sτ={w∣w=(w0,w1,…,wn)is the grid function defined onΩτ}.

For any w∈Sτ, introduce the following notation:

wk+12=12(wk+wk+1),wk¯=12(wk+1+wk−1),Dtwk=1τ(wk+1−wk),Dt‾wk=1τ(wk−wk−1),δtwk+12=1τ(wk+1−wk),Δtwk=12τ(wk+1−wk−1).

It is easy to know that

Δtwk=12(δtwk−12+δtwk+12).

Suppose u={uik∣0⩽i⩽m,0⩽k⩽n} is a grid function defined on Ωhτ, then v={uik∣0⩽i⩽m} is a grid function defined on Ωh, w={uik∣0⩽k⩽n} is a grid function defined on Ωτ.

Lemma 1.1 ([25], [35]).


(a) Suppose u,v∈Uh, then

−h∑i=1m−1(δx2ui)vi=h∑i=1m(δxui−12)(δxvi−12)+(δxu12)v0−(δxum−12)vm.

(b) Suppose u∈U˚h, then

−h∑i=1m−1(δx2ui)ui=|u|12,|u|12⩽‖u‖·|u|2,‖u‖∞⩽L2|u|1,‖u‖⩽L6|u|1.

(c) Suppose u∈U˚h, then

‖u‖∞2⩽‖u‖·|u|1,

and for arbitrary ε>0, it holds that

‖u‖∞⩽ε|u|1+14ε‖u‖,‖u‖∞2⩽ε|u|12+14ε‖u‖2.

(d) Suppose u∈Uh, then

|u|12⩽4h2‖u‖2.

(e) Suppose u∈Uh, then

‖u‖∞2⩽2‖u‖·|u|1+1L‖u‖2,

and for arbitrary ε>0, it holds that

‖u‖∞2⩽ε|u|12+(1ε+1L)‖u‖2.

(f) Suppose u∈Uh, then for arbitrary ε>0, it holds that

‖δxu‖∞2⩽ε|u|22+(1ε+1L)|u|12.

Proof.


We only prove (c) and (e).

(c) Noticing that...

Erscheint lt. Verlag 8.5.2023
Reihe/Serie De Gruyter Series in Applied and Numerical Mathematics
De Gruyter Series in Applied and Numerical Mathematics
ISSN
ISSN
Co-Autor China Science Publishing & Media Ltd.
Zusatzinfo 11 b/w ill.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Schlagworte Differentialgleichung • finite difference methods • Finite Difference Methods, Nonlinear Evolution Equations, Partial Differential Equations, • Finite-Differenzen-Methoden • Finites Element • Nichtlineare Gleichnugan • nichtlineare Gleichungen • nonlinear evolution equations • Partial differential equations
ISBN-10 3-11-079611-2 / 3110796112
ISBN-13 978-3-11-079611-7 / 9783110796117
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Wasserzeichen)
Größe: 65,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ein Übungsbuch für Fachhochschulen

von Michael Knorrenschild

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
16,99