Finite Difference Methods for Nonlinear Evolution Equations (eBook)
432 Seiten
De Gruyter (Verlag)
978-3-11-079611-7 (ISBN)
The series is devoted to the publication of high-level monographs and specialized graduate texts which cover the whole spectrum of applied mathematics, including its numerical aspects. The focus of the series is on the interplay between mathematical and numerical analysis, and also on its applications to mathematical models in the physical and life sciences.
The aim of the series is to be an active forum for the dissemination of up-to-date information in the form of authoritative works that will serve the applied mathematics community as the basis for further research.
Editorial Board
Rémi Abgrall, Universität Zürich, Switzerland
José Antonio Carrillo de la Plata, University of Oxford, UK
Jean-Michel Coron, Université Pierre et Marie Curie, Paris, France
Athanassios S. Fokas, Cambridge University, UK
Irene Fonseca, Carnegie Mellon University, Pittsburgh, USA
Zhi-zhong Sun, Southeast University, China
1 Difference methods for the Fisher equation
1.1 Introduction
The Fisher equation belongs to the class of reaction-diffusion equations. In fact, it is one of the simplest semilinear reaction-diffusion equations, the one which has the inhomogeneous term f(u)=λu(1−u), which can exhibit traveling wave solutions that switch between equilibrium states given by f(u)=0. Such an equation occurs, e. g., in ecology, physiology, combustion, crystallization, plasma physics and in general, phase transition problems. Fisher proposed this equation in 1937 to describe the spatial spread of an advantageous allele and explored its traveling wave solutions [12]. In the same year (1937) as Fisher, Kolmogorov, Petrovskii and Piskunov introduced a more general reaction-diffusion equation [18]. In this chapter, we consider the following initial and boundary value problem of a one-dimensional Fisher equation:
where λ is a positive constant, functions φ(x), α(t), β(t) are all given and φ(0)=α(0), φ(L)=β(0). Suppose that the problem (1.1)–(1.3) has a smooth solution.
Before introducing the difference scheme, a priori estimate on the solution of the problem (1.1)–(1.3) is given.
Proof.
(I) Multiplying both the right- and left-hand sides of (1.1) by u(x,t) gives
i. e.,
Integrating both the right- and left-hand sides with respect to x on the interval [0,L] and noticing (1.3) with α(t)=β(t)=0, we have
which can be rewritten as
Then E(t)=E(0) is obtained.
(II) Multiplying both the right- and left-hand sides of (1.1) by ut(x,t) yields
i. e.,
Integrating both the right- and left-hand sides with respect to x on the interval [0,L] and noticing (1.3) with α(t)=β(t)=0, we have
which can be rewritten as
i. e.,
Thus, F(t)=F(0) is followed. □
1.2 Notation and lemmas
In order to derive the difference scheme, we first divide the domain [0,L]×[0,T]. Take two positive integers m, n. Divide [0,L] into m equal subintervals, and [0,T] into n subintervals. Denote h=L/m, τ=T/n; xi=ih, 0⩽i⩽m; tk=kτ, 0⩽k⩽n; Ωh={xi∣0⩽i⩽m}, Ωτ={tk∣0⩽k⩽n};Ωhτ=Ωh×Ωτ. We call all of the nodes {(xi,tk)∣0⩽i⩽m} on the line t=tk the k-th time-level nodes. In addition, denote xi+12=12(xi+xi+1), tk+12=12(tk+tk+1), r=τh2.
Denote
For any grid function u∈Uh, introduce the following notation:
It follows easily that
Suppose u,v∈Uh. Introduce the inner products, norms and seminorms as
If Uh is a complex space, then the corresponding inner product is defined by
with v¯i the conjugate of vi.
Denote
For any w∈Sτ, introduce the following notation:
It is easy to know that
Suppose u={uik∣0⩽i⩽m,0⩽k⩽n} is a grid function defined on Ωhτ, then v={uik∣0⩽i⩽m} is a grid function defined on Ωh, w={uik∣0⩽k⩽n} is a grid function defined on Ωτ.
Lemma 1.1 ([25], [35]).
(a) Suppose u,v∈Uh, then
(b) Suppose u∈U˚h, then
(c) Suppose u∈U˚h, then
and for arbitrary ε>0, it holds that
(d) Suppose u∈Uh, then
(e) Suppose u∈Uh, then
and for arbitrary ε>0, it holds that
(f) Suppose u∈Uh, then for arbitrary ε>0, it holds that
Proof.
We only prove (c) and (e).
(c) Noticing that...
Erscheint lt. Verlag | 8.5.2023 |
---|---|
Reihe/Serie | De Gruyter Series in Applied and Numerical Mathematics |
De Gruyter Series in Applied and Numerical Mathematics | |
ISSN | ISSN |
Co-Autor | China Science Publishing & Media Ltd. |
Zusatzinfo | 11 b/w ill. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik |
Schlagworte | Differentialgleichung • finite difference methods • Finite Difference Methods, Nonlinear Evolution Equations, Partial Differential Equations, • Finite-Differenzen-Methoden • Finites Element • Nichtlineare Gleichnugan • nichtlineare Gleichungen • nonlinear evolution equations • Partial differential equations |
ISBN-10 | 3-11-079611-2 / 3110796112 |
ISBN-13 | 978-3-11-079611-7 / 9783110796117 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 65,6 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich