Tourism Analytics Before and After COVID-19 -

Tourism Analytics Before and After COVID-19 (eBook)

Case Studies from Asia and Europe

Yok Yen Nguwi (Herausgeber)

eBook Download: PDF
2023 | 1. Auflage
VIII, 246 Seiten
Springer Nature Singapore (Verlag)
978-981-19-9369-5 (ISBN)
Systemvoraussetzungen
181,89 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book is compilation of different analytics and machine learning techniques focusing on the tourism industry, particularly in measuring the impact of COVID-19 as well as forging a path ahead toward recovery. It includes case studies on COVID-19's effects on tourism in Europe, Hong Kong, China, and Singapore with the objective of looking at the issues through a data analytical lens and uncovering potential solutions. It adopts descriptive analytics, predictive analytics, machine learning predictive models, and some simulation models to provide holistic understanding.

There are three ways in which readers will benefit from reading this work. Firstly, readers gain an insightful understanding of how tourism is impacted by different factors, its intermingled relationship with macro and business data, and how different analytics approaches can be used to visualize the issues, scenarios, and resolutions. Secondly, readers learn to pick up data analytics skills from the illustrated examples. Thirdly, readers learn the basics of Python programming to work with the different kinds of datasets that may be applicable to the tourism industry.




Yok-Yen is Senior Lecturer of Data Analytics in College of Business (Nanyang Business School). She obtained her B.Eng.(Computer) from the University of Newcastle, Australia, before completing her Ph.D. in Computer Engineering at Nanyang Technological University. Apart from that, she also received ACCA accountancy qualification.

She accumulated her tertiary teaching experience since 2006. She has taught students at undergraduate and graduate levels as well as supervised honors and research students. In terms of research, she enjoys discovering the intelligence within data and shaping the right algorithm for data analysis. She has studied data of different forms and published work in the domains of intelligent transport system, cognitive-based emotion recognition, and health and psychology informatics. Her work has appeared in Expert System with Applications, Neural Computing and Applications, Journal of Technology and Behavioral Science as well as Connection Science.


This book is compilation of different analytics and machine learning techniques focusing on the tourism industry, particularly in measuring the impact of COVID-19 as well as forging a path ahead toward recovery. It includes case studies on COVID-19's effects on tourism in Europe, Hong Kong, China, and Singapore with the objective of looking at the issues through a data analytical lens and uncovering potential solutions. It adopts descriptive analytics, predictive analytics, machine learning predictive models, and some simulation models to provide holistic understanding.There are three ways in which readers will benefit from reading this work. Firstly, readers gain an insightful understanding of how tourism is impacted by different factors, its intermingled relationship with macro and business data, and how different analytics approaches can be used to visualize the issues, scenarios, and resolutions. Secondly, readers learn to pick up data analytics skills from the illustrated examples. Thirdly, readers learn the basics of Python programming to work with the different kinds of datasets that may be applicable to the tourism industry.
Erscheint lt. Verlag 8.3.2023
Zusatzinfo VIII, 246 p. 243 illus., 223 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Mathematik / Informatik Mathematik Statistik
Wirtschaft
Schlagworte Data Analytics for COVID-19 Effects on Tourism • Data analytics for the Tourism Industry • Machine Learning Predictive Models for Tourism Management • Recovery of Tourism After COVID-19 • Tourism and Big Data
ISBN-10 981-19-9369-6 / 9811993696
ISBN-13 978-981-19-9369-5 / 9789811993695
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Grundkurs für Ausbildung und Praxis

von Ralf Adams

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
29,99
Das umfassende Handbuch

von Wolfram Langer

eBook Download (2023)
Rheinwerk Computing (Verlag)
39,92