Advanced Lectures on Machine Learning -

Advanced Lectures on Machine Learning

ML Summer Schools 2003, Canberra, Australia, February 2-14, 2003, Tübingen, Germany, August 4-16, 2003, Revised Lectures
Buch | Softcover
X, 246 Seiten
2004 | 2004
Springer Berlin (Verlag)
978-3-540-23122-6 (ISBN)
53,49 inkl. MwSt

Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600.

This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in Tübingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references.

Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning.

An Introduction to Pattern Classification.- Some Notes on Applied Mathematics for Machine Learning.- Bayesian Inference: An Introduction to Principles and Practice in Machine Learning.- Gaussian Processes in Machine Learning.- Unsupervised Learning.- Monte Carlo Methods for Absolute Beginners.- Stochastic Learning.- to Statistical Learning Theory.- Concentration Inequalities.

Erscheint lt. Verlag 2.9.2004
Reihe/Serie Lecture Notes in Artificial Intelligence
Lecture Notes in Computer Science
Zusatzinfo X, 246 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 405 g
Themenwelt Informatik Software Entwicklung User Interfaces (HCI)
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Algorithm analysis and problem complexity • Algorithmic Learning • Bayesian inference • classification • classifier systmes • Inductive Inference • learning • Learning Algorithms • Learning theory • machine learning • Maschinelles Lernen • Statistical Learning • stochastic learning • Unsupervised Learning
ISBN-10 3-540-23122-6 / 3540231226
ISBN-13 978-3-540-23122-6 / 9783540231226
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Aus- und Weiterbildung nach iSAQB-Standard zum Certified Professional …

von Mahbouba Gharbi; Arne Koschel; Andreas Rausch; Gernot Starke

Buch | Hardcover (2023)
dpunkt Verlag
34,90
Lean UX und Design Thinking: Teambasierte Entwicklung …

von Toni Steimle; Dieter Wallach

Buch | Hardcover (2022)
dpunkt (Verlag)
34,90
Wissensverarbeitung - Neuronale Netze

von Uwe Lämmel; Jürgen Cleve

Buch | Hardcover (2023)
Carl Hanser (Verlag)
34,99