Machine Learning and Deep Learning in Computational Toxicology (eBook)

Huixiao Hong (Herausgeber)

eBook Download: PDF
2023 | 1st ed. 2023
XIX, 635 Seiten
Springer International Publishing (Verlag)
978-3-031-20730-3 (ISBN)

Lese- und Medienproben

Machine Learning and Deep Learning in Computational Toxicology -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book is a collection of machine learning and deep learning algorithms, methods, architectures, and software tools that have been developed and widely applied in predictive toxicology. It compiles a set of recent applications using state-of-the-art machine learning and deep learning techniques in analysis of a variety of toxicological endpoint data. The contents illustrate those machine learning and deep learning algorithms, methods, and software tools and summarise the applications of machine learning and deep learning in predictive toxicology with informative text, figures, and tables that are contributed by the first tier of experts. One of the major features is the case studies of applications of machine learning and deep learning in toxicological research that serve as examples for readers to learn how to apply machine learning and deep learning techniques in predictive toxicology. This book is expected to provide a reference for practical applications of machine learning and deep learning in toxicological research. It is a useful guide for toxicologists, chemists, drug discovery and development researchers, regulatory scientists, government reviewers, and graduate students. The main benefit for the readers is understanding the widely used machine learning and deep learning techniques and gaining practical procedures for applying machine learning and deep learning in predictive toxicology. 


Huixiao Hong is a Senior Biomedical Research and Biomedical Product Assessment Service (SBRBPAS) expert and the chief of Bioinformatics Branch, Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration (FDA), working on the scientific bases for regulatory applications of bioinformatics, cheminformatics, artificial intelligence, and genomics. Before joining the FDA, he was the manager of Bioinformatics Division of Z-Tech, an ICFI company. He held a research scientist position at Sumitomo Chemical Company in Japan and was a visiting scientist at National Cancer Institute at National Institutes of Health. He was also an associate professor and the director of Laboratory of Computational Chemistry at Nanjing University in China. Dr. Hong is a member of steering committee of OpenTox, a member of the board directors of US MidSouth Computational Biology and Bioinformatics Society, and in the leadership circle of US FDA modeling and simulation working group. He published more than 230 scientific papers with a Google Scholar h-index 57. He serves as an associate editor for Experimental Biology and Medicine and an editorial board member for multiple peer-reviewed journals. He received his Ph.D. from Nanjing University in China and conducted research in Leeds University in England.
Erscheint lt. Verlag 11.3.2023
Reihe/Serie Computational Methods in Engineering & the Sciences
Computational Methods in Engineering & the Sciences
Zusatzinfo XIX, 635 p. 149 illus., 124 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Medizin / Pharmazie Studium
Schlagworte algorithm • Deep learning • machine learning • Model • Prediction • Toxicology
ISBN-10 3-031-20730-0 / 3031207300
ISBN-13 978-3-031-20730-3 / 9783031207303
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 20,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
18,68