Data Mining and Predictive Analytics for Business Decisions -  Fortino Andres Fortino

Data Mining and Predictive Analytics for Business Decisions (eBook)

A Case Study Approach
eBook Download: EPUB
2023 | 1. Auflage
272 Seiten
Mercury Learning and Information (Verlag)
978-1-68392-673-3 (ISBN)
Systemvoraussetzungen
49,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

With many recent advances in data science, we have many more tools and techniques available for data analysts to extract information from data sets. This book will assist data analysts to move up from simple tools such as Excel for descriptive analytics to answer more sophisticated questions using machine learning. Most of the exercises use R and Python, but rather than focus on coding algorithms, the book employs interactive interfaces to these tools to perform the analysis. Using the CRISP-DM data mining standard, the early chapters cover conducting the preparatory steps in data mining: translating business information needs into framed analytical questions and data preparation. The Jamovi and the JASP interfaces are used with R and the Orange3 data mining interface with Python. Where appropriate, Voyant and other open-source programs are used for text analytics. The techniques covered in this book range from basic descriptive statistics, such as summarization and tabulation, to more sophisticated predictive techniques, such as linear and logistic regression, clustering, classification, and text analytics. Includes companion files with case study files, solution spreadsheets, data sets and charts, etc. from the book.

Features:

  • Covers basic descriptive statistics, such as summarization and tabulation, to more sophisticated predictive techniques, such as linear and logistic regression, clustering, classification, and text analytics
  • Uses R, Python, Jamovi and JASP interfaces, and the Orange3 data mining interface
  • Includes companion files with the case study files from the book, solution spreadsheets, data sets, etc.


With many recent advances in data science, we have many more tools and techniques available for data analysts to extract information from data sets. This book will assist data analysts to move up from simple tools such as Excel for descriptive analytics to answer more sophisticated questions using machine learning. Most of the exercises use R and Python, but rather than focus on coding algorithms, the book employs interactive interfaces to these tools to perform the analysis. Using the CRISP-DM data mining standard, the early chapters cover conducting the preparatory steps in data mining: translating business information needs into framed analytical questions and data preparation. The Jamovi and the JASP interfaces are used with R and the Orange3 data mining interface with Python. Where appropriate, Voyant and other open-source programs are used for text analytics. The techniques covered in this book range from basic descriptive statistics, such as summarization and tabulation, to more sophisticated predictivetechniques, such as linear and logistic regression, clustering, classification, and text analytics. Includes companion files with case study files, solution spreadsheets, data sets and charts, etc. from the book. FEATURES:Covers basic descriptive statistics, such as summarization and tabulation, to more sophisticated predictive techniques, such as linear and logistic regression, clustering, classification, and text analyticsUses R, Python, Jamovi and JASP interfaces, and the Orange3 data mining interfaceIncludes companion files with the case study files from the book, solution spreadsheets, data sets, etc.
Erscheint lt. Verlag 13.2.2023
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Wirtschaft Betriebswirtschaft / Management Unternehmensführung / Management
ISBN-10 1-68392-673-0 / 1683926730
ISBN-13 978-1-68392-673-3 / 9781683926733
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Wasserzeichen)
Größe: 18,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Praxishandbuch betriebswirtschaftlicher Grundlagen für …

von Andreas Frodl

eBook Download (2024)
Springer Gabler (Verlag)
54,99
Was Führungskräfte von Hunden lernen können

von Melanie Ebert

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
19,99